206
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Biological versatility of crotamine – a cationic peptide from the venom of a South American rattlesnake

, , , &
Pages 1515-1525 | Published online: 10 Nov 2010

Bibliography

  • Birrell GW, Earl ST, Wallis TP, The diversity of bioactive proteins in Australian snake venoms. Mol Cell Proteomics 2007;6:973-86
  • Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007;24:145-61
  • Becker S, Terlau H. Toxins from cone snails: properties, applications and biotechnological production. Appl Microbiol Biotechnol 2008;79:1-9
  • Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 2005;15:403-20
  • Mackessy SP, editor. Handbook of venoms and toxins of reptiles. CRC Press, Boca Raton, FL-USA; 2009
  • Ulrich H, Colli W, Ho PL, Bases moleculares da biotecnologia. 1st edition. Sao Paulo: Roca; 2008
  • Goncalves JM, Vieira LG. Estudos sobre venenos de serpentes brasileiras I. Analise eletroforetica. An Acad Bras Cienc 1950;22:141-50
  • Goncalves JM, Arantes EG. Estudos sobre venenos de serpentes brasileiras III—Determinacao quantitativa de crotamina no veneno de cascavel Brasileira. An Acad Bras Cienc 1956;28:369-71
  • Oguiura N, Boni-Mitake M, Radis-Baptista G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 2005;46:363-70
  • Radis-Baptista G, Kerkis A, Prieto-Silva AR, Membrane-translocating peptides and toxins: from nature to bedside. J Braz Chem Soc 2008;19:211-25
  • Kerkis A, Kerkis I, Radis-Baptista G, Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J 2004;18:1407-9
  • Nascimento FD, Hayashi MA, Kerkis A, Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem 2007;282:21349-60
  • Hayashi MA, Nascimento FD, Kerkis A, Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon 2008;52:508-17
  • Habermann E. Extraction and properties of crotactin, phospholipase A, crotamine and toxin III from the venom of the Brazilian rattlesnake. Biochem Zool 1957;329:405-15
  • Laure CJ. The primary structure of crotamine (author's transl). Hoppe Seylers Z Physiol Chem 1975;356:213-15
  • Nicastro G, Franzoni L, de Chiara C, Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur J Biochem 2003;270:1969-79
  • Fadel V, Bettendorff P, Herrmann T, Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon 2005;46:759-67
  • Cameron DL, Tu AT. Chemical and functional homology of myotoxin from prairie rattlesnake venom and crotamine from South American rattlesnake venom. Biochim Biophys Acta 1978;532:147-54
  • Bieber AL, McParland RH, Becker RR. Amino acid sequences of myotoxins from Crotalus viridis concolor venom. Toxicon 1987;25:677-80
  • Samejima Y, Aoki Y, Mebs D. Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus). Toxicon 1991;29:461-8
  • Nedelkov D, Bieber AL. Characterization of the two myotoxin isomers from the prairie rattlesnake (Crotalus viridis viridis) by capillary zone electrophoresis and fluorescence quenching studies. Toxicon 1997;35:689-98
  • Toyama MH, Marangoni S, Novello JC, Biophysical, histopathological and pharmacological characterization of crotamine isoforms F22 and F32. Toxicon 2003;41:493-500
  • Ponce-Soto LA, Martins-de-Souza D, Marangoni S. Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom. Toxicon 2010;55:1443-52
  • Schenberg S. Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Science 1959;129:1361-3
  • Radis-Baptista G, Oguiura N, Hayashi MA, Nucleotide sequence of crotamine isoform precursors from a single South American rattlesnake (Crotalus durissus terrificus). Toxicon 1999;37:973-84
  • Radis-Baptista G, Kubo T, Oguiura N, Structure and chromosomal localization of the gene for crotamine, a toxin from the South American rattlesnake, Crotalus durissus terrificus. Toxicon 2003;42:747-52
  • Oguiura N, Collares MA, Furtado MF, Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009;446:35-40
  • Oguiura N, Camargo ME, da Silva AR, Horton DS. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon 2000;38:443-8
  • Chang CC, Tseng KH. Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br J Pharmacol 1978;63:551-9
  • Gutierrez JM, Cerdas L. Mechanism of action of myotoxins isolated from snake venoms. Rev Biol Trop 1984;32:213-22
  • Ownby CL, Aird SD, Kaiser II. Physiological and immunological properties of small myotoxins from the venom of the midget faded rattlesnake (Crotalus viridis concolor). Toxicon 1988;26:319-23
  • Rizzi CT, Carvalho-de-Souza JL, Schiavon E, Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon 2007;50:553-62
  • Yount NY, Kupferwasser D, Spisni A, Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci USA 2009;106:14972-7
  • Yeaman MR, Yount NY. Unifying themes in host defence effector polypeptides. Nat Rev Microbiol 2007;5:727-40
  • Jarver P, Langel U. Cell-penetrating peptides—A brief introduction. Biochim Biophys Acta 2006;1758:260-3
  • Futaki S. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int J Pharm 2002;245:1-7
  • Joliot A, Prochiantz A. Transduction peptides: from technology to physiology. Nat Cell Biol 2004;6:189-96
  • Kerkis A, Hayashi MA, Yamane T, Kerkis I. Properties of cell penetrating peptides (CPPs). IUBMB Life 2006;58:7-13
  • Pouton CW, Wagstaff KM, Roth DM, Targeted delivery to the nucleus. Adv Drug Deliv Rev 2007;59:698-717
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008;5:105-17
  • Kabouridis PS. Biological applications of protein transduction technology. Trends Biotechnol 2003;21:498-503
  • Mae M, Langel U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 2006;6:509-14
  • Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today 2008;5(2):e95-103
  • Futaki S, editor. Membrane permeable peptide vectors. chemistry and functional design for the therapeutic applications. Adv Drug Deliv Rev 2008;60:447-614
  • Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 2008;613:2242-55
  • Kersemans V, Kersemans K, Cornelissen B. Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 2008;14:2415-47
  • Patel LN, Zaro JL, Shen WC. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 2007;24:1977-92
  • Irvine AS, Trinder PK, Laughton DL, Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000;18:1273-8
  • Harada H, Kizaka-Kondoh S, Hiraoka M. Antitumor protein therapy; application of the protein transduction domain to the development of a protein drug for cancer treatment. Breast Cancer 2006;13:16-26
  • Brooks NA, Pouniotis DS, Tang C-K, Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta 2010;1805:25-34
  • Ford KG, Darling D, Souberbielle B, Farzaneh F. Protein transduction: a new tool for the study of cellular ageing and senescence. Mech Ageing Dev 2000;121:113-21
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55:1189-93
  • Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 1991;88:1864-8
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994;269:10444-50
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;272:16010-17
  • Joliot A, Prochiantz A. Homeoproteins as natural Penetratin cargoes with signaling properties. Adv Drug Deliv Rev 2008;60:608-13
  • Nagahara H, Vocero-Akbani AM, Snyder EL, Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998;4:1449-52
  • Zhao M, Weissleder R. Intracellular cargo delivery using tat peptide and derivatives. Med Res Rev 2004;24:1-12
  • Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997;88:223-33
  • Phelan A, Elliott G, O'Hare P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998;16:440-3
  • Dilber MS, Phelan A, Aints A, Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther 1999;6:12-21
  • Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005;57:529-45
  • Kosuge M, Takeuchi T, Nakase I, Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem 2008;19:656-64
  • Chuah MK, Collen D, Vanden-Driessche T. Biosafety of adenoviral vectors. Curr Gene Ther 2003;3:527-43
  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 2001;98:8786-91
  • Martin A, O'Hare P, McLauchlan J, Elliott G. Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. J Virol 2002;76:4961-70
  • Suzuki T, Futaki S, Niwa M, Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 2002;277:2437-43
  • Herce HD, Garcia AE. Cell penetrating peptides: how do they do it? J Biol Phys 2007;33:345-56
  • Drin G, Cottin S, Blanc E, Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 2003;278:31192-201
  • Richard JP, Melikov K, Vives E, Cell-penetrating peptides. A re-evaluation of the mechanism of cellular uptake. J Biol Chem 2003;278:585-90
  • Gump JM, Dowdy SF. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 2007;13:443-8
  • Ferrari A, Pellegrini V, Arcangeli C, Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 2003;8:284-94
  • Vendeville A, Rayne F, Bonhoure A, HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 2004;15:2347-60
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004;10:310-15
  • Jones AT. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides. Int J Pharm 2008;354:34-8
  • Jones SW, Christison R, Bundell K, Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 2005;145:1093-102
  • Fischer R, Waizenegger T, Kohler K, Brock R. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim Biophys Acta 2002;1564:365-74
  • Raagel H, Saalik P, Pooga M. Peptide-mediated protein delivery—which pathways are penetrable? Biochem Biophys Acta 2010: published online 17 February 2010, doi:10.1016/j.bbamem.2010.02.013
  • Yesylevskyy S, Marrink S-J, Mark AE. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophys J 2009;97:40-9
  • Ziegler A, Blatter XL, Seelig A, Seelig J. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 2003;42:9185-94
  • Pujals S, Fernandez-Carneado J, Lopez-Iglesias C, Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta 2006;1758:264-79
  • Console S, Marty C, Garcia-Echeverria C, Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 2003;278:35109-14
  • Poon GM, Gariepy J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans 2007;35(Pt 4):788-93
  • Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3:600-14
  • Lundberg P, El-Andaloussi S, Sutlu T, Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 2007;21:2664-71
  • Radis-Baptista G, de la Torre BG, Andreu D. A novel cell-penetrating peptide sequence derived by structural minimization of snake toxin exhibits preferential nucleolar localization. J Med Chem 2008;51:7041-4
  • Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol 2005;8:426-33
  • Garlanda C, Dejana E. Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 1997;17:1193-202
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389-95
  • Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002;14:96-102
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710-20
  • Ouellette AJ. Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol 2004;18:405-19
  • Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 2004;101:7363-8
  • Schneider JJ, Unholzer A, Schaller M, Human defensins. J Mol Med 2005;83:587-95
  • Torres AM, Kuchel PW. The beta-defensin-fold family of polypeptides. Toxicon 2004;44:581-8
  • Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides. Biopolymers 2008;90:1-7
  • Mancin AC, Soares AM, Andriao-Escarso SH, The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon 1998;36:1927-37
  • Cruz-Chamorro L, Puertollano MA, Puertollano E, In vitro biological activities of magainin alone or in combination with nisin. Peptides 2006;27:1201-9
  • Yamane T, Kerkis I, Kerkis A, Use of crotamine, kit and composition. WO2006096953; 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.