613
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Rho-kinase inhibitors offer a new approach in the treatment of glaucoma

&

Bibliography

  • Rao PV, Epstein DL. Rho GTPase/Rho kinase as a novel target for the treatment of glaucoma. Bio Drugs 2007;21:167-77
  • Chen J, Runyan SA, Robinson MR. Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol 2011;5:667-77
  • Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y27632. Invest Ophthalmol Vis Sci 2001;42:1029-37
  • Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 2001;42:137-44
  • Rao PV, Deng P, Sasaki Y, Epstein DL. Regulation of myosin light chain kinase phosphorylation in the trabecular meshwork: role in aqueous humor outflow facility. Exp Eye Res 2005;80:197-206
  • Honjo M, Inatani M, Kido N, et al. Effects of protein kinase inhibitor, HA 1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 2001;119:1171-8
  • Racette L, Wilson MR, Zangwill LM, et al. Primary open-angle glaucoma in Blacks: a review. Surv Ophthalmol 2003;48:295-313
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-7
  • Schuman JS. Antiglaucoma medications: a review of safety and tolerability issues related to their use. Clin Ther 2000;22:167-208
  • Musch DC, Gillespie BW, Niziol LM, et al. Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology 2011;118:1766-73
  • Friedman DS, Wolfs RC, O’Colmain BJ, et al. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122:532-8
  • Vajaranant TS, Wu S, Torres M, Varma R. The changing face of primary open-angle glaucoma in the United States: Demographic and geographic changes from 2011 to 2050. Am J Ophthalmol 2012;154:303-14
  • Vajaranant TS, Wu S, Torres M, Varma R. A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States. Invest Ophthalmol Vis Sci 2012;53:2464-6
  • Pascale A, Filippo D, Govoni S. Protecting the retinal neurons from glaucoma: Lowering ocular pressure is not enough. Pharmacol Res 2012;66:19-32
  • Morgan JE, Jeffery G, Foss AJ. Axon deviation in the human lamina cribrosa. Br J Ophthalmol 1998;82:680-3
  • Findl O, Strenn K, Wolzt M, et al. Effects of changes in intraocular pressure on human ocular haemodynamics. Curr Eye Res 1997;16:1024-9
  • Pilluna LE, Anderson DR, Knighton RW, et al. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 1997;64:737-44
  • Neufeld AH, Hernandez MR, Gonzalez M. Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997;115:497-503
  • Lesar TS. Glaucoma. In: DiPiro JT, Talbert RL, editors. Pharmacotherapy: a pathophysiologic approach. 4th edition. Appleton and Lange; Stamford, Connecticut: 1999. p. 1466-78
  • Marquis RE, Whitson JT. Management of glaucoma: focus on pharmacological therapy. Drugs Aging 2005;22:1-21
  • Rossetti L, Marchetti I, Orzalesi N, et al. Randomized clinical trials on medical treatment of glaucoma: are they appropriate to guide clinical practice? Arch Ophthal 1993;111:96-103
  • Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 2002;120:1268-79
  • Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007;114:1965-72
  • Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial that determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-13
  • Gordon MO, Beiser JA, Brandt JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthal 2002;120:714-20
  • Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol 1989;107:186-8
  • Quigley HA. Open-angle glaucoma. N Engl J Med 1993;328:1097-106
  • Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 2009;88:648-55
  • Johnson M. What controls aqueous humor outflow resistance? Exp Eye Res 2006;82:545-57
  • Lutjen-Drecoll E. Functional morphology of the trabecular meshwork in primate eyes. Prog Retin Eye Res 1999;18:91-119
  • Tian B, Gabelt BT, Geiger B, Kaufman PL. The role of the actomyosin system in regulation trabecular fluid outflow. Exp Eye Res 2009;88:713-17
  • Ethier CR. The inner wall of schlemm's canal. Exp Eye Res 2002;74:161-72
  • Gabelt BT, Kaufmann PL. Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res 2005;24:612-37
  • Gong H, Tripathi RC, Tripathi BJ. Morphology of the aqueous outflow pathway. Microsc Res Tech 1996;33:336-67
  • Francis BA, Alvardo J. The cellular basis of aqueous outflow regulation. Curr Opin Ophthalmol 1997;8:19-27
  • Llobet A, Gasull X, Gual A. Understanding trabecular meshwork physiology: a key to the control of intraocular pressure? News Physiol Sci 2003;18:205-9
  • Tian B, Geiger B, Epstein DL, et al. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci 2000;41:619-23
  • Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary contractility. Prog Retin Eye Res 2000;19:271-95
  • Lutjen-Drecoll E. Morphological changes in glaucomatous eyes and the role of TGF-beta2 for the pathogenesis of the disease. Exp Eye Res 2005;81:1-4
  • Tezel G, Kass MA, Kolker AE, et al. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma 1997;6:83-9
  • Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma 2002;11:259-70
  • Tripathi RC, Li J, Chan WF, et al. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta2. Exp Eye Res 1994;59:723-7
  • Alm A, Nilsson SFE. Uveoscleral outflow – A review. Exp Eye Res 2009;88:760-8
  • Weinreb RN. Uveoscleral outflow: the other outflow pathway. J Glaucoma 2000;9:343-5
  • Kaufman PL. Enhancing trabecular outfow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia: Interrogating Mother Nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res 2008;86:3-17
  • Robin AL, Burnstein Y. Selectivity of site of action and systemic effects of topical alpha agonists. Curr Opin Ophthalmol 1998;9:30-3
  • Watanabe K, Chiou GC. Action mechanism of timolol to lower the intraocular pressure in rabbits. Ophthalmic Res 1983;15:160-7
  • Mincione F, Scozzafava A, Supuran CT. The development of topically acting carbonic anhydrase inhibitors as anti-glaucoma agents. Curr Top Med Chem 2007;7:849-54
  • Lindén C, Alm A. Prostaglandin analogues in the treatment of glaucoma. Drugs Aging 1999;14:387-98
  • Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ 2003;27:201-6
  • Somlyo AP, Somlyo AV. Calcium sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325-58
  • Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 2001;276:4527-30
  • Hartshorne DJ. Myosin phosphatase: subunits and interactions. Acta Physiol Scand 1998;164:483-93
  • Pfitzer G. Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 2001;91:497-503
  • Fukata Y, Amanto M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 2001;22:32-9
  • Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 2002;80:629-38
  • Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by Rho-associated protein kinase in hypertension. Nature 1997;389:990-4
  • Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 2007;50:17-24
  • Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 2001;276:670-6
  • Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM kinase. Science 1999;285:895-8
  • Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho kinase. Science 1997;275:1308-11
  • Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol 2008;20:242-8
  • Taki F, Kume H, Kobayashi T, et al. Effects of Rho-kinase inactivation on eosinophilia and hyper-reactivity in murine airways by allergen challenges. Clin Exp Allergy 2007;37:599-607
  • Iizuka K, Shimizu Y, Tsukagoshi H, et al. Augmented acetylcholine-induced translocation of RhoA in bronchial smooth muscle from antigen-induced airway hyperresponsive rats. Br J Pharmacol 2001;406:273-9
  • Wang L, Xue L, Yan H, et al. Effects of ROCK inhibitor, Y-27632, on adhesion and mobility in esophageal squamous cell cancer cells. Mol Biol Rep 2010;37:1971-7
  • Deng L, Gang L, Li R, et al. Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer Biol Ther 2010;9:875-84
  • Somlyo AV, Bradshaw D, Ramos S, et al. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 2000;269:652-9
  • Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effects on endothelial NAD(P)H oxidase system. Circ Res 2003;93:767-75
  • Takeshima H, Kobayahsi N, Koguchi W, et al. Cardioprotective effect of a combination of rho-kinase inhibitor and P38 MAPK inhibitor on cardiovascular remodeling and oxidative stress in Dahl rats. J Atheroscler Thromb 2012;19:326-36
  • Arita R, Hata Y, Nakao S, et al. Rho-kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 2009;58:215-26
  • Kolavennu V, Zeng L, Peng H, et al. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 2008;57:714-23
  • Lasker GF, Pankey EA, Allain AV, et al. The selective rho-kinase inhibitor azaindole-1 has long-lasting erectile activity in the rat. J Urology 2013;81:465e7-14
  • Chitaley K, Wingard CJ, Webb C, et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001;7:119-22
  • Jin L, Liu T, Lagoda GA, et al. Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction. FASEB J 2006;20:536-8
  • Bond JE, Kokosis G, Ren L, et al. Would contraction is attenuated by fasudil inhibition of rho-kinase. Plast Reconstr Surg 2011;128:438e-50e
  • Tsuno A, Nasu K, Kawano Y, et al. Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: a promising agent for the treatment of endometriosis. J Clin Endocrinol Metab 2011;96:E1944-52
  • Matsumoto Y, Uwatoku T, Oi K, et al. Long-term inhibition of rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: Involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004;24:181-6
  • Löhn M, Plettenburg O, Ivashehenko Y, et al. Pharmacologic characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 2009;54:676-83
  • Doe C, Bentley R, Behm DJ, et al. Novel rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J Pharmacol Exp Ther 2007;320:89-98
  • Kishi T, Hirooka Y, Masumoto A, et al. Rho-kinase improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005;111:2741-7
  • Ma Z, Zhang J, Du R, et al. Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats. Biol Pharm Bull 2011;34:1684-9
  • Sun X, Minohara M, Kikuchi H, et al. The selective rho-kinase inhibitor fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. J Neuroimmunol 2006;18:126-34
  • Ding RY, Zhao DM, Zhang ZD, et al. Pretreatment of rho-kinase inhibitor inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in mice. J Surg Res 2011;171:e209-14
  • Thorlacius K, Slotta JE, Laschke MW, et al. Protective effect of fasudil, a rho-kinase inhibitor, on chemokine expression, leukocyte recruitment, and hepatocellular apoptosis in septic liver injury. J Leukoc Biol 2006;79:923-31
  • Li F, Xia W, Li A, et al. Long-term inhibition of rho-kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacol Res 2007;55:64-71
  • Abe K, Shimokawa H, Morikawa K, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 2004;94:385-93
  • Casey DB, Badejo AM, Dhaliwal JS, et al. Analysis of responses to the rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat. Am J Physiol Heart Circ Physiol 2010;299:H184-92
  • Teraishi K, Kurata H, Nakajima A, et al. Preventive effect of Y-27632, a selective rho-kinase inhibitor, on ischemia/reperfusion-induced acute renal failure in rats. Eur J Pharmacol 2004;505:205-11
  • Ishikawa Y, Nishikimi T, Akimoto K, et al. Long-term administration of rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension 2006;47:1075-83
  • Masumoto A, Mohri M, Shimokawa H, et al. Suppression of coronary artery spasm by the rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002;105:1545-7
  • Rikitake Y, Kim H-H, Huang Z, et al. Inhibition of rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005;36:2251-7
  • Maeda Y, Hirano K, Nishimura J, et al. Rho-kinase inhibitor inhibits both myosin phosphorylation-dependent and -independent enhancement of myofilament Ca2+ sensitivity in the bovine middle cerebral artery. Br J Pharmacol 2003;140:871-80
  • Shimizu Y, Thumkeo K, Keel J, et al. ROCK-1 regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 2005;168:941-53
  • Thumkeo D, Keel J, Ishizaki T, et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 2003;23:5043-55
  • Thumkeo D, Shimizu Y, Sakamoto S, et al. ROCK-1 and ROCK-2 cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells 2005;10:825-34
  • Rikitake Y, Oyama N, Wang CY, et al. Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/- haploinsufficient mice. Circulation 2005;112:2959-65
  • Zhang YM, Bo J, Taffet GE, et al. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J 2006;20:916-25
  • Chang J, Xie M, Shah VR, et al. Activation of Rho-associated coiled-coiled protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci USA 2006;103:14495-500
  • Zhao J, Zhou D, Guo J, et al. Effect of fasudil hydrochloride, a protein kinase inhibitor, on cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokoyo) 2006;46:421-8
  • Zhang M, Maddala R, Rao PV. Novel molecular insights into rhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork. Am J Physiol Cell Physiol 2008;295:C1057-70
  • Lu Z, Overby DR, Scott PA, et al. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res 2008;86:271-81
  • Rosenthal R, Choritz L, Schlott S, et al. Effects of ML-7 and Y-27632 on carbachol- and endothelin-1-induced contraction of bovine trabecular meshwork. Exp Eye Res 2005;80:837-45
  • Rao PV, Deng P, Maddala R, et al. Expression of dominant negative rho-binding domain of rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow. Mol Vis 2005;11:288-97
  • Kameda T, Inoue T, Inatani M, et al. The effect of rho-associated protein kinase inhibitor on monkey schlemm's canal endothelial cells. Invest Ophthalmol Vis Sci 2012;53:3092-103
  • Thieme H, Nuskovski M, Nass JU, et al. Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and RhoA. Invest Ophthalmol Vis Sci 2000;41:4240-6
  • Nakajima E, Nakajima T, Minagawa Y, et al. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous outflow in monkeys and human eyes. J Pharm Sci 2005;94:701-8
  • Fukiage C, Mizutani K, Kawamoto Y, et al. Involvement of phosphorylation of myosin phosphatase by ROCK in trabecular meshwork and ciliary muscle contraction. Biochem Biophys Res Commun 2001;288:296-300
  • Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev 1995;16:3-19
  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Bipoharm 2005;60:207-25
  • Urtti L, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 1993;37:435-57
  • Tokushige H, Inatani M, Nemoto S, et al. Effects of topical administration of Y-39982, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci 2007;48:3216-22
  • Fukunaga T, Ikesugi K, Nishio M, et al. The effect of the Rho-associated protein kinase inhibitor, HA-1077, in the rabbit ocular hypertension model induced by water loading. Curr Eye Res 2009;34:42-7
  • Tian B, Kaufman PL. Effects of the rho-kinase inhibitor Y-27632 and the phosphatase inhibitor calyculin A on outflow facility in monkeys. Exp Eye Res 2005;80:215-25
  • Waki M, Yoshida Y, Oka T, et al. Reduction of intraocular pressure by topical administration of the Rho-associated protein kinase. Curr Eye Res 2001;22:470-4
  • Tamura M, Nakao H, Yoshizaki H, et al. Development of specific Rho-kinase inhibitors and their clinical application. Biochim Biophys Acta 2005;1754:245-52
  • Williams RD, Novack GD, Van Haarlem T, et al. Ocular hypotensive effect of the rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol 2011;152:834-41
  • Tanihara H, Inatani M, Honjo M, et al. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol 126:309-15
  • Bertrand J, Di Polo A, McKerracher L. Enhanced survival and regeneration of axotomized retinal neurons by repeated delivery of cell permeable C3-like Rho antagonists. Neurobiol Dis 2007;25(1):65-72
  • Honjo M, Tanihara H, Kameda T, et al. potential role of rho-associated protein kinase inhibtor Y27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2007;48(12):5549-57
  • Gottanka J, Kuhlmann A, Scholz M, et al. Pathophysiologic changes in the optic nerves of eyes with primary open angle and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 2005;46(11):4170-81
  • Bartels S, Roth H, Jumblatt M, et al. Pharmacological effects of topical timolol in the rabbit eye. Invest Ophthalmol Vis Sci 1980;19(10):1189-97
  • Arnold J, Hansen M, Gorman G, et al. The effect of Rho-associated kinase inhibition on the ocular penetration of timolol maleate. Invest Ophthalmol Vis Sci 2013;54(2):1118-26
  • Okumura N, Koizumi N, Kay E, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci 2013;54(4):2493-502
  • Pipparelli A, Arsenijevic Y, Thuret G, et al. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. PLoS One 2013;8(4):e62095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.