685
Views
81
CrossRef citations to date
0
Altmetric
Reviews

Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases

, , , &

Bibliography

  • Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006;58(8):1007-19
  • Yoshikawa M, Murakami T, Ueno T, et al. Bioactive saponins and glycosides. IX. Notoginseng (2) : structures of five new dammarane-type triterpene oligoglycosides, notoginsenosides-E, -G, -H, -I, and -J, and a novel acetylenic fatty acid glycoside, notoginsenic acid beta-sophoroside, from the dried root of Panax notoginseng (BURK.) F. H. Chen. Chem Pharm Bull (Tokyo) 1997;45(6):1056-62
  • Yoshikawa M, Murakami T, Ueno T, et al. Bioactive saponins and glycosides. VIII. Notoginseng (1): new dammarane-type triterpene oligoglycosides, notoginsenosides-A, -B, -C, and -D, from the dried root of Panax notoginseng (Burk.) F.H. Chen. Chem Pharm Bull (Tokyo) 1997;45(6):1039-45
  • Yoshikawa M, Morikawa T, Yashiro K, et al. Bioactive saponins and glycosides. XIX. Notoginseng (3): immunological adjuvant activity of notoginsenosides and related saponins: structures of notoginsenosides-L, -M, and -N from the roots of Panax notoginseng (Burk.) F. H. Chen. Chem Pharm Bull (Tokyo) 2001;49(11):1452-6
  • Teng RW, Li HZ, Wang DZ, Yang CR. Hydrolytic reaction of plant extracts to generate molecular diversity: new dammarane glycosides from the mild acid hydrolysate of root saponins of Panax notoginseng. Helv Chim Acta 2004;87:1270-8
  • Chen JT, Li HZ, Wang D, et al. New dammarane monodesmosides from the acidic deglycosylation of notoginseng-leaf saponins. Helv Chim Acta 2006;89(7):1442-8
  • Sun H, Yang Z, Ye Y. Structure and biological activity of protopanaxatriol-type saponins from the roots of Panax notoginseng. Int Immunopharmacol 2006;6(1):14-25
  • Cui XM, Jiang ZY, Zeng J, et al. Two new dammarane triterpene glycosides from the rhizomes of Panax notoginseng. J Asian Nat Prod Res 2008;10(9-10):845-9
  • Liao PY, Wang D, Zhang YJ, Yang CR. Dammarane-type glycosides from steamed notoginseng. J Agric Food Chem 2008;56(5):1751-66
  • Wang XY, Wang D, Ma XX, et al. Two new dammarane-type bisdesmosides from the fruit pedicels of panax notoginseng. Helv Chim Acta 2008;91(1):60-6
  • Dan M, Xie G, Gao X, et al. A rapid ultra-performance liquid chromatography-electrospray Ionisation mass spectrometric method for the analysis of saponins in the adventitious roots of Panax notoginseng. Phytochem Anal 2009;20(1):68-76
  • Pei Y, Du Q, Liao PY, et al. Notoginsenoside ST-4 inhibits virus penetration of herpes simplex virus in vitro. J Asian Nat Prod Res 2011;13(6):498-504
  • Wang D, Liao PY, Zhu HT, et al. The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 2012;132(4):1808-13
  • Mao Q, Yang J, Cui XM, et al. Target separation of a new anti-tumor saponin and metabolic profiling of leaves of Panax notoginseng by liquid chromatography with eletrospray ionization quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2012;59:67-77
  • Yoshikawa M, Morikawa T, Kashima Y, et al. Structures of new dammarane-type Triterpene Saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal Ginseng Saponins. J Nat Prod 2003;66(7):922-7
  • Wan JB, Zhang QW, Hong SJ, et al. Chemical investigation of saponins in different parts of Panax notoginseng by pressurized liquid extraction and liquid chromatography-electrospray ionization-tandem mass spectrometry. Molecules 2012;17(5):5836-53
  • Wan JB, Zhang QW, Hong SJ, et al. 5,6-Didehydroginsenosides from the roots of Panax notoginseng. Molecules 2010;15(11):8169-76
  • Bao JC, Liu G, Cong DL, Zhang CX. Research Progress on chemical components in Panax notoginseng. Chin Tradit Pat Med 2006;128(2):246-53
  • Liu G, Wang B, Zhang J, et al. Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: role of downregulation of CD40 and MMP-9 expression. J Ethnopharmacol 2009;126(2):350-4
  • Dou L, Lu Y, Shen T, et al. Panax notogingseng saponins suppress RAGE/MAPK signaling and NF-kappaB activation in apolipoprotein-E-deficient atherosclerosis-prone mice. Cell Physiol Biochem 2012;29(5-6):875-82
  • Pan C, Huo Y, An X, et al. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vascul Pharmacol 2012;56(3-4):150-8
  • Chen W, Dang Y, Zhu C. Simultaneous determination of three major bioactive saponins of Panax notoginseng using liquid chromatography-tandem mass spectrometry and a pharmacokinetic study. Chin Med 2010;5:12
  • Yao Y, Wu WY, Guan SH, et al. Proteomic analysis of differential protein expression in rat platelets treated with notoginsengnosides. Phytomedicine 2008;15(10):800-7
  • Wu JH, Leung GPH, Kwan YW, et al. Suppression of diet-induced hypercholesterolaemia by saponins from Panax notoginseng in rats. J Funct Foods 2013;5(3):1159-69
  • Wang N, Wan JB, Chan SW, et al. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin Med 2011;6:37
  • Wan JB, Yang FQ, Li SP, et al. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J Pharm Biomed Anal 2006;41(5):1596-601
  • Dan M, Su M, Gao X, et al. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 2008;69(11):2237-44
  • Zhang CX, Bao JC, Li XG, Zheng YL. HPLC determination of the amount of ginsenosides in different part of panax ginseng C. A. Mey. and P. quinquefolius L. and P. notoginseng (Burk) F. H. Chen. Chin J Pharm Anal 2005;25(10):1190-4
  • Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002;8(11):1249-56
  • Libby P. Inflammation in atherosclerosis. Nature 2002;420(6917):868-74
  • Orlandi A, Bochaton-Piallat ML, Gabbiani G, Spagnoli LG. Aging, smooth muscle cells and vascular pathobiology: implications for atherosclerosis. Atherosclerosis 2006;188(2):221-30
  • Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev 2010;9(12):830-4
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;12(3):204-12
  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011;145(3):341-55
  • McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 2011;50(4):331-47
  • Jia Y, Li ZY, Zhang HG, et al. Panax notoginseng saponins decrease cholesterol ester via up-regulating ATP-binding cassette transporter A1 in foam cells. J Ethnopharmacol 2010;132(1):297-302
  • Tall AR, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008;7(5):365-75
  • Ji W, Gong BQ. Hypolipidemic effects and mechanisms of Panax notoginseng on lipid profile in hyperlipidemic rats. J Ethnopharmacol 2007;113(2):318-24
  • Fan JS, Liu DN, Huang G, et al. Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression. J Ethnopharmacol 2012;142(3):732-8
  • Huang TH, Razmovski-Naumovski V, Salam NK, et al. A novel LXR-alpha activator identified from the natural product Gynostemma pentaphyllum. Biochem Pharmacol 2005;70(9):1298-308
  • Li J, Xie ZZ, Tang YB, et al. Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2011;652(1-3):104-10
  • Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006;18(5):516-23
  • Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by alphaVbeta3 integrin. Am J Pathol 2004;165(1):247-58
  • Yuan Z, Liao Y, Tian G, et al. Panax notoginseng saponins inhibit Zymosan A induced atherosclerosis by suppressing integrin expression, FAK activation and NF-kappaB translocation. J Ethnopharmacol 2011;138(1):150-5
  • Wang Y, Peng D, Huang W, et al. Mechanism of altered TNF-alpha expression by macrophage and the modulatory effect of Panax notoginseng saponins in scald mice. Burns 2006;32(7):846-52
  • Chang SH, Choi Y, Park JA, et al. Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr 2007;26(6):785-91
  • Jung HW, Seo UK, Kim JH, et al. Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappaB signaling pathway in murine macrophages. J Ethnopharmacol 2009;122(2):313-19
  • Liu Y, Zhang HG, Jia Y, Li XH. Panax notoginseng saponins attenuate atherogenesis accelerated by zymosan in rabbits. Biol Pharm Bull 2010;33(8):1324-30
  • Kutuk O, Basaga H. Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol Med 2003;9(12):549-57
  • Cheng O, Ostrowski RP, Liu W, Zhang JH. Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience 2010;166(4):1101-9
  • Im SS, Osborne TF. Liver x receptors in atherosclerosis and inflammation. Circ Res 2011;108(8):996-1001
  • Chen SW, Li XH, Ye KH, et al. Total saponins of Panax notoginseng protected rabbit iliac artery against balloon endothelial denudation injury. Acta Pharmacol Sin 2004;25(9):1151-6
  • Jia Y, Li X, Liu Y, Zhang H. Atherosclerosis lesion is accelerated by persistent systemic inflammation but attenuated by saponins from Panax Notoginseng in rabbits. J Med Coll PLA 2008;23(1):38-44
  • Ning N, Dang X, Bai C, et al. Panax notoginsenoside produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury. J Ethnopharmacol 2012;139(2):504-12
  • Yang XL, Guo TK, Wang YH, et al. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. Int Immunopharmacol 2012;12(2):408-14
  • Han SY, Li HX, Ma X, et al. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J Ethnopharmacol 2013;145(3):722-7
  • Liu JC, Cheng TH, Lee HM, et al. Inhibitory effect of trilinolein on angiotensin II-induced cardiomyocyte hypertrophy. Eur J Pharmacol 2004;484(1):1-8
  • Zhang HS, Wang SQ. Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway. Free Radic Biol Med 2006;40(9):1664-74
  • Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy – from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005;1754(1-2):253-62
  • Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999;340(2):115-26
  • Wu L, Zhang W, Tang YH, et al. Effect of total saponins of "panax notoginseng root" on aortic intimal hyperplasia and the expressions of cell cycle protein and extracellular matrix in rats. Phytomedicine 2010;17(3-4):233-40
  • Xu L, Liu JT, Liu N, et al. Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. J Ethnopharmacol 2011;137(1):226-30
  • Roy J, Tran PK, Religa P, et al. Fibronectin promotes cell cycle entry in smooth muscle cells in primary culture. Exp Cell Res 2002;273(2):169-77
  • Cai BX, Li XY, Chen JH, et al. Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur J Pharmacol 2009;606(1-3):142-9
  • Guan YY, Zhou JG, Zhang Z, et al. Ginsenoside-Rd from panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur J Pharmacol 2006;548(1-3):129-36
  • Li SY, Wang XG, Ma MM, et al. Ginsenoside-Rd potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway. Apoptosis 2011;17(2):113-20
  • Zhang S, Deng J, Gao Y, et al. Ginsenoside Rb(1) inhibits the carotid neointimal hyperplasia induced by balloon injury in rats via suppressing the phenotype modulation of vascular smooth muscle cells. Eur J Pharmacol 2012;685(1-3):126-32
  • Furukawa T, Bai CX, Kaihara A, et al. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol 2006;70(6):1916-24
  • Zhou W, Chai H, Lin P, et al. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41(5):861-8
  • Li H, Deng CQ, Chen BY, et al. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion. J Ethnopharmacol 2009;121(3):412-18
  • Ye R, Han J, Kong X, et al. Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. Biol Pharm Bull 2008;31(10):1923-7
  • Ye R, Yang Q, Kong X, et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58(3):391-8
  • Chen S, Liu J, Liu X, et al. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. J Ethnopharmacol 2011;137(1):263-70
  • Yue QX, Xie FB, Song XY, et al. Proteomic studies on protective effects of salvianolic acids, notoginsengnosides and combination of salvianolic acids and notoginsengnosides against cardiac ischemic-reperfusion injury. J Ethnopharmacol 2012;141(2):659-67
  • Xie J-T, Shao ZH, Vanden Hoek TL, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532(3):201-7
  • Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;285(19):2486
  • Ninomiya JK, L'Italien G, Criqui MH, et al. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 2004;109(1):42-6
  • Labreuche J, Deplanque D, Touboul PJ, et al. Association between change in plasma triglyceride levels and risk of stroke and carotid atherosclerosis: systematic review and meta-regression analysis. Atherosclerosis 2010;212(1):9-15
  • Nyyssonen K, Kurl S, Karppi J, et al. LDL oxidative modification and carotid atherosclerosis: results of a multicenter study. Atherosclerosis 2012;225(1):231-6
  • Wierzbicki AS. Lipid-lowering therapies in development. Expert Opin Investig Drugs 2004;13(11):1405-18
  • Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol 2010;204(3):233-40
  • Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009;29(4):431-8
  • Xia W, Sun C, Zhao Y, Wu L. Hypolipidemic and antioxidant activities of sanchi (radix notoginseng) in rats fed with a high fat diet. Phytomedicine 2011;18(6):516-20
  • Oosterveer MH, Grefhorst A, Groen AK, Kuipers F. The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design. Prog Lipid Res 2010;49(4):343-52
  • Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol 2009;296(2):H272-H81
  • Claudel T, Inoue Y, Barbier O, et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 2003;125(2):544-55
  • Wan JB, Lee SMY, Wang JD, et al. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem 2009;57(15):6692-7
  • Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000;342(24):1792-801
  • McBane RD II, Hardison RM, Sobel BE, BARI 2D Study Group. Comparison of plasminogen activator inhibitor-1, tissue type plasminogen activator antigen, fibrinogen, and D-dimer levels in various age decades in patients with type 2 diabetes mellitus and stable coronary artery disease (from the BARI 2D trial). Am J Cardiol 2010;105(1):17-24
  • Zhang W, Wojta J, Binder BR. Effect of notoginsenoside R1 on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 1994;14(7):1040-6
  • Zhang WJ, Wojta J, Binder BR. Effect of notoginsenoside R1 on the synthesis of components of the fibrinolytic system in cultured smooth muscle cells of human pulmonary artery. Cell Mol Biol 1997;43(4):581-7
  • Zhang HS, Wang SQ. Notoginsenoside R1 from Panax notoginseng inhibits TNF-alpha-induced PAI-1 production in human aortic smooth muscle cells. Vascul Pharmacol 2006;44(4):224-30
  • Collaboration FS. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005;294(14):1799-809
  • Cicero AF, Vitale G, Savino G, Arletti R. Panax notoginseng (Burk.) effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet. Phytother Res 2003;17(2):174-8
  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011;17(11):1410-22
  • Tan KT, Lip GY. Platelets, atherosclerosis and the endothelium: new therapeutic targets? Expert Opin Investig Drugs 2003;12(11):1765-76
  • He L, Chen X, Zhou M, et al. Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study. Phytomedicine 2011;18(6):437-42
  • Deng J, Lv XT, Wu Q, Huang XN. Ginsenoside Rg(1) inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol 2009;608(1-3):42-27
  • Deng J, Wang YW, Chen WM, et al. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010;33(4):631-5
  • Qian ZM, Wan JB, Zhang QW, Li SP. Simultaneous determination of nucleobases, nucleosides and saponins in Panax notoginseng using multiple columns high performance liquid chromatography. J Pharm Biomed Anal 2008;48(5):1361-7
  • Jia XH, Wang CQ, Liu JH, et al. Comparative studies of saponins in 1-3-year-old main roots, fibrous roots, and rhizomes of Panax notoginseng, and identification of different parts and growth-year samples. J Nat Med 2013;67(2):339-49
  • Nikolsky Y, Nikolskaya T, Bugrim A. Biological networks and analysis of experimental data in drug discovery. Drug Discov Today 2005;10(9):653-62
  • Margineanu DG. Systems biology impact on antiepileptic drug discovery. Epilepsy Res 2012;98(2-3):104-15
  • Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013;145(1):1-10
  • Zhang GB, Li QY, Chen QL, Su SB. Network pharmacology: a new approach for chinese herbal medicine research. Evid Based Complement Alternat Med 2013;2013:621423
  • Joo IW, Ryu JH, Oh HJ. The influence of Sam-Chil-Geun (Panax notoginseng) on the serum lipid levels and inflammations of rats with hyperlipidemia induced by poloxamer-407. Yonsei Med J 2010;51(4):504-10
  • Li X, Wang G, Sun J, et al. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional chinese medicine (TCM) in rats. Biol Pharm Bull 2007;30(5):847-51
  • Xiong J, Guo J, Huang L, et al. Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of Panax notoginseng. Int J Pharm 2008;360(1-2):191-6
  • Lee PS, Han JY, Song TW, et al. Physicochemical characteristics and bioavailability of a novel intestinal metabolite of ginseng saponin (IH901) complexed with beta-cyclodextrin. Int J Pharm 2006;316(1-2):29-36
  • Rhule A, Rase B, Smith JR, Shepherd DM. Toll-like receptor ligand-induced activation of murine DC2.4 cells is attenuated by Panax notoginseng. J Ethnopharmacol 2008;116(1):179-86
  • Rhule A, Navarro S, Smith JR, Shepherd DM. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol 2006;106(1):121-8
  • Cho WC, Chung WS, Lee SK, et al. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 2006;550(1-3):173-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.