1,069
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Novel sodium channel antagonists in the treatment of neuropathic pain

&
Pages 215-226 | Received 14 Sep 2015, Accepted 16 Nov 2015, Published online: 14 Dec 2015

Bibliography

  • Papers of special note have been highlighted as either of interest () or of considerable interest (••) to readers.
  • Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. Pain. 2011;152:2204–2205.
  • Bogduk N, Merskey H. Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. 2nd ed. Seattle (WA): IASP Press; 1994.
  • Gilron I, Baron R, Jensen T. Neuropathic pain: principles of diagnosis and treatment. Mayo Clin. Proc. 2015;90:532–545.
  • Smith BH, Torrance N. Epidemiology of neuropathic pain and its impact on quality of life. Curr. Pain Headache Rep. 2012;16:191–198.
  • Gaskin DJ, Richard P. The economic costs of pain in the United States. J. Pain. 2012;13:715–724.
  • Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656.
  • Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007;132:237–251.
  • Amir R, Argoff CE, Bennett GJ, et al. The role of sodium channels in chronic inflammatory and neuropathic pain. J. Pain. 2006;7:S1–29.
  • England S. Voltage-gated sodium channels: the search for subtype-selective analgesics. Expert Opin. Investig. Drugs. 2008;17:1849–1864.
  • Dib-Hajj SD, Black JA, Waxman SG. Voltage-gated sodium channels: therapeutic targets for pain. Pain Med. 2009;10:1260–1269.
  • Bhattacharya A, Wickenden AD, Chaplan SR. Sodium channel blockers for the treatment of neuropathic pain. Neurotherapeutics. 2009;6:663–678.
  • Dib-Hajj SD, Cummins TR, Black JA, et al. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 2010;33:325–347.
  • Cohen CJ. Targeting voltage-gated sodium channels for treating neuropathic and inflammatory pain. Curr. Pharm. Biotechnol. 2011;12:1715–1719.
  • Eijkelkamp N, Linley JE, Baker MD, et al. Neurological perspectives on voltage-gated sodium channels. Brain. 2012;135:2585–2612.

• A complete review regarding sodium channels, sodium channel blockers and related diseases.

  • Habib AM, Wood JN, Cox JJ. Sodium channels and pain. Handb. Exp. Pharmacol. 2015;227:39–56.
  • Zuliani V, Patel MK, Fantini M, et al. Recent advances in the medicinal chemistry of sodium channel blockers and their therapeutic potential. Curr. Top. Med. Chem. 2009;9:396–415.
  • Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain. 2007;131:243–257.
  • Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front. Pharmacol. 2011;2:54.
  • Jukič M, Kikelj D, Anderluh M. Isoform selective voltage-gated sodium channel modulators and the therapy of pain. Curr. Med. Chem. 2014;21:164–186.

•• A comprehensive and very informative review about sodium channel selective targeting in pain.

  • Zuliani V, Rivara M, Fantini M, et al. Sodium channel blockers for neuropathic pain. Expert Opin. Ther. Pat. 2010;20:755–779.
  • Black JA, Cummins TR, Plumpton C, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82:2776–2785.
  • Kim CH, Oh Y, Chung JM, et al. Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat. Neurosci Lett. 2002;323:125–128.
  • Lindia JA, Köhler MG, Martin WJ, et al. Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain. 2005;117:145–153.
  • Nassar MA, Baker MD, Levato A, et al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain. 2006;2:33.
  • Xie W, Strong JA, Ye L, et al. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain. 2013;154:1170–1180.
  • Xie W, Strong JA, Zhang J-M. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain. Neuroscience. 2015;291:317–330.
  • Deuis JR, Zimmermann K, Romanovsky AA, et al. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain. 2013;154:1749–1757.
  • Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894–898.
  • Dib-Hajj SD, Cummins TR, Black JA, et al. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci. 2007;30:555–563.
  • Dib-Hajj SD, Yang Y, Black JA, et al. The Na(V)1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 2013;14:49–62.
  • Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52:767–774.
  • Minett MS, Nassar MA, Clark AK, et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 2012;3:791.
  • Lee J-H, Park C-K, Chen G, et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 2014;157:1393–1404.
  • Herzog RI, Cummins TR, Ghassemi F, et al. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J. Physiol. 2003;551:741–750.
  • Rush AM, Dib-Hajj SD, Liu S, et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. 2006;103:8245–8250.
  • Theile JW, Jarecki BW, Piekarz AD, et al. Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents. J. Physiol. 2011;589:597–608.
  • Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257–262.
  • Djouhri L, Fang X, Okuse K, et al. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J. Physiol. 2003;550:739–752.
  • Ho C, O’Leary ME. Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol. Cell. Neurosci. 2011;46:159–166.
  • Chen X, Pang R-P, Shen K-F, et al. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Exp. Neurol. 2011;227:279–286.
  • Gold MS, Weinreich D, Kim C-S, et al. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 2003;23:158–166.
  • Novakovic SD, Tzoumaka E, McGivern JG, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 1998;18:2174–2187.
  • Joshi SK, Mikusa JP, Hernandez G, et al. Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain. 2006;123:75–82.
  • Dong X-W, Goregoaker S, Engler H, et al. Small interfering RNA-mediated selective knockdown of Na(V)1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience. 2007;146:812–821.
  • Dib-Hajj SD, Black JA, Waxman SG. NaV1.9: a sodium channel linked to human pain. Nat. Rev. Neurosci. 2015;16:511–519.
  • Leipold E, Liebmann L, Korenke GC, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 2013;45:1399–1404.
  • Zhang XY, Wen J, Yang W, et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 2013;93:957–966.
  • Huang J, Han C, Estacion M, et al. Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain. 2014;137:1627–1642.
  • Han C, Yang Y, de Greef BTA, et al. The domain II S4-S5 linker in Nav1.9: A missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. NeuroMolecular Med. 2015;17:158–169.
  • Demant DT, Lund K, Finnerup NB, et al. Pain relief with lidocaine 5% patch in localized peripheral neuropathic pain in relation to pain phenotype. Pain. 2015. DOI:10.1097/j.pain.0000000000000266.
  • Hutson P, Backonja M, Knurr H. Intravenous lidocaine for neuropathic pain: a retrospective analysis of tolerability and efficacy. Pain Med. 2015;16:531–536.
  • Saeed T, Nasrullah M, Ghafoor A, et al. Efficacy and tolerability of carbamazepine for the treatment of painful diabetic neuropathy in adults: a 12-week, open-label, multicenter study. Int. J. Gen. Med. 2014;7:339–343.
  • Wiffen PJ, Derry S, Moore RA, et al. Carbamazepine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2014;4:CD005451.
  • Suter MR, Kirschmann G, Laedermann CJ, et al. Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state. Anesthesiology. 2013;118:160–172.
  • Kharatmal SB, Singh JN, Sharma SS. Rufinamide improves functional and behavioral deficits via blockade of tetrodotoxin-resistant sodium channels in diabetic neuropathy. Curr. Neurovasc. Res. 2015;12:262–268.
  • Devor M. Sodium channels and mechanisms of neuropathic pain. J. Pain. 2006;7:S3–S12.
  • Kalia J, Milescu M, Salvatierra J, et al. From foe to friend: using animal toxins to investigate ion channel function. J. Mol. Biol. 2015;427:158–175.
  • Liu Y, Tang J, Zhang Y, et al. Synthesis and analgesic effects of μ-TRTX-Hhn1b on models of inflammatory and neuropathic pain. Toxins (Basel). 2014;6:2363–2378.
  • Green BR, Bulaj G, Norton RS. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med. Chem. 2014;6:1677–1698.
  • Layer RT, McIntosh JM. Conotoxins: therapeutic potential and application. Mar Drugs. 2006;4:119–142.
  • Twede VD, Miljanich G, Olivera BM, et al. Neuroprotective and cardioprotective conopeptides: an emerging class of drug leads. Curr. Opin. Drug Discov. Devel. 2009;12:231–239.
  • Olivera BM. Conus peptides: biodiversity-based discovery and exogenomics. J. Biol. Chem. 2006;281:31173–31177.

•• A useful and instructive publication dealing with bioactive peptides.

  • Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel). 2012;4:1236–1260.
  • Han T, Teichert R, Olivera B, et al. Conus venoms - A rich source of peptide-based therapeutics. Curr. Pharm. Des. 2008;14:2462–2479.
  • Klint JK, Smith JJ, Vetter I, et al. Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach. Br. J. Pharmacol. 2015;172:2445–2458.
  • Murray JK, Ligutti J, Liu D, et al. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel. J. Med. Chem. 2015;58:2299–2314.
  • Hoyt SB, London C, Abbadie C, et al. A novel benzazepinone sodium channel blocker with oral efficacy in a rat model of neuropathic pain. Bioorg. Med. Chem. Lett. 2013;23:3640–3645.
  • Ho GD, Tulshian D, Bercovici A, et al. Discovery of pyrrolo-benzo-1,4-diazines as potent Nav1.7 sodium channel blockers. Bioorg. Med. Chem. Lett. 2014;24:4110–4113.
  • Yang S-W, Ho GD, Tulshian D, et al. Bioavailable pyrrolo-benzo-1,4-diazines as Na(v)1.7 sodium channel blockers for the treatment of pain. Bioorg. Med. Chem. Lett. 2014;24:4958–4962.
  • Sun S, Jia Q, Zenova AY, et al. The discovery of benzenesulfonamide-based potent and selective inhibitors of voltage-gated sodium channel Na(v)1.7. Bioorg. Med. Chem. Lett. 2014;24:4397–4401.
  • McCormack K, Santos S, Chapman ML, et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc. Natl. Acad. Sci. U. S. A. 2013;110:E2724–32.
  • Bagal SK, Bungay PJ, Denton SM, et al. Discovery and optimization of selective Nav1.8 modulator series that demonstrate efficacy in preclinical models of pain. ACS Med. Chem. Lett. 2015;6:650–654.
  • Freeman-Cook KD, Hoffman RL, Johnson TW. Lipophilic efficiency: the most important efficiency metric in medicinal chemistry. Future Med. Chem. 2013;5:113–115.

• An enlightening paper about parameters for decision making in medicinal chemistry.

  • Lynch SM, Tafesse L, Carlin K, et al. Dibenzazepines and dibenzoxazepines as sodium channel blockers. Bioorg. Med. Chem. Lett. 2015;25:43–47.
  • Lynch SM, Tafesse L, Carlin K, et al. N-Aryl azacycles as novel sodium channel blockers. Bioorg. Med. Chem. Lett. 2015;25:48–52.
  • Yang J, Gharagozloo P, Yao J, et al. 3-(4-phenoxyphenyl)pyrazoles: a novel class of sodium channel blockers. J. Med. Chem. 2004;47:1547–1552.
  • Shao D, Okuse K, Djamgoz MB. Protein-protein interactions involving voltage-gated sodium channels: post-translational regulation, intracellular trafficking and functional expression. Int. J. Biochem. Cell Biol. 2009;41:1471–1481.
  • Ilyin VI, Pomonis JD, Whiteside GT, et al. Pharmacology of 2-[4-(4-chloro-2-fluorophenoxy)phenyl]-pyrimidine-4-carboxamide: a potent, broad-spectrum state-dependent sodium channel blocker for treating pain states. J. Pharmacol. Exp. Ther. 2006;318:1083–1093.
  • Whiteaker KL, Gopalakrishnan SM, Groebe D, et al. Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 2001;6:305–312.
  • Arkin MR, Connor PR, Emkey R, et al. FLIPRTM assays for GPCR and ion channel targets. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2012.
  • Cole S, Bagal S, El-Kattan A, et al. Full efficacy with no CNS side-effects: unachievable panacea or reality? DMPK considerations in design of drugs with limited brain penetration. Xenobiotica. 2012;42:11–27.
  • Kikuchi R, De Morais SM, Kalvass JC. In vitro P-glycoprotein efflux ratio can predict the in vivo brain penetration regardless of biopharmaceutics drug disposition classification system class. Drug Metab. Dispos. 2013;41:2012–2017.
  • Carbonara R, Carocci A, Roussel J, et al. Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres. Front. Pharmacol. 2015;6:155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.