1,092
Views
31
CrossRef citations to date
0
Altmetric
Review

Investigational insulin secretagogues for type 2 diabetes

Pages 405-422 | Received 24 Nov 2015, Accepted 05 Feb 2016, Published online: 27 Feb 2016

References

  • DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–795.
  • Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann NY Acad Sci. 2013;1281:64–91.
  • Yabe D, Seino Y, Fukushima M, et al. Beta cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in East Asians. Curr Diab Rep. 2015;15:602.
  • Bhatt HB. Thoughts on the progression of type 2 diabetes drug discovery. Expert Opin Drug Discov. 2015;10:107–110.
  • Ferrannini E, Mari A. Beta-cell function in type 2 diabetes. Metabolism. 2014;63:1217–1227.
  • Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–2443.
  • Scheen AJ. A review of gliptins for 2014. Exp Opin Pharmacother. 2015;16:43–62.
  • Bailey CJ. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther. 2015;98:170–184.
  • Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55:2096–2108.
  • Jitrapakdee S, Wutthisathapornchai A, Wallace JC, et al. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia. 2010;53:1019–1032.
  • Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75:155–179.
  • Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18:162–185.
  • Zou CY, Gong Y, Liang J. Metabolic signaling of insulin secretion by pancreatic beta-cell and its derangement in type 2 diabetes. Eur Rev Med Pharmacol Sci. 2014;18:2215–2227.
  • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751–1760.
  • Thule PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep. 2014;14:473.
  • Henquin JC. The fiftieth anniversary of hypoglycaemic sulphonamides. How did the mother compound work? Diabetologia. 1992;35:907–912.
  • Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009;325:607–610.
  • Yabe D, Seino Y. Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe? J Diabetes Investig. 2014;5:475–477.
  • Takahashi H, Shibasaki T, Park JH, et al. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes. 2015;64:1262–1272.
  • Hirst JA, Farmer AJ, Dyar A, et al. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013;56:973–984.
  • Diaz-Garcia CM. The TRPA1 channel and oral hypoglycemic agents: is there complicity in beta-cell exhaustion? Channels. 2013;7:420–422.
  • Rustenbeck I, Krautheim A, Jorns A, et al. Beta-cell toxicity of ATP-sensitive K+ channel-blocking insulin secretagogues. Biochem Pharmacol. 2004;67:1733–1741.
  • Dornhorst A. Insulinotropic meglitinide analogues. Lancet. 2001;358:1709–1716.
  • Scott LJ. Repaglinide: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72:249–272.
  • Campbell IW. Nateglinide – current and future role in the treatment of patients with type 2 diabetes mellitus. Int J Clin Pract. 2005;59:1218–1228.
  • Mascarello A, Frederico MJ, Castro AJ, et al. Novel sulfonyl(thio)urea derivatives act efficiently both as insulin secretagogues and as insulinomimetic compounds. Eur J Med Chem. 2014;86:491–501.
  • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–1705.
  • Zhang Y, Hong J, Chi J, et al. Head-to-head comparison of dipeptidyl peptidase-IV inhibitors and sulfonylureas – a meta-analysis from randomized clinical trials. Diabetes Metab Res Rev. 2014;30:241–256.
  • Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014;63:9–19.
  • Meier JJ, Nauck MA. Incretin-based therapies: where will we be 50 years from now? Diabetologia. 2015;58:1745–1750.
  • Barnett AH, Charbonnel B, Moses RG, et al. Dipeptidyl peptidase-4 inhibitors in triple oral therapy regimens in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2015;31:1919–1931.
  • Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–149.
  • Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf. 2015;14:505–524.
  • Scheen AJ, Paquot N. Gliptin versus a sulphonylurea as add-on to metformin. Lancet. 2012;380:450–452.
  • Scheen AJ. Once-weekly DPP-4 inhibitors: do they meet an unmet need? Lancet Diabetes Endocrinol. 2015;3:162–164.
  • McKeage K. Trelagliptin: first global approval. Drugs. 2015;75:1161–1164.
  • Kaku K. First novel once-weekly DPP-4 inhibitor, trelagliptin, for the treatment of type 2 diabetes mellitus. Expert Opin Pharmacother. 2015;16:2539–2547.
  • Biftu T, Sinha-Roy R, Chen P, et al. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem. 2014;57:3205–3212.
  • Burness CB. Omarigliptin: first global approval. Drugs. 2015;75:1947–1952.
  • Inagaki N, Onouchi H, Sano H, et al. SYR-472, a novel once-weekly dipeptidyl peptidase-4 (DPP-4) inhibitor, in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:125–132.
  • Inagaki N, Onouchi H, Maezawa H, et al. Once-weekly trelagliptin versus daily alogliptin in Japanese patients with type 2 diabetes: a randomised, double-blind, phase 3, non-inferiority study. Lancet Diabetes Endocrinol. 2015;3:191–197.
  • Sheu W-H-H, Gantz I, Chen M, et al. Safety and efficacy of omarigliptin (MK-3102), a novel once-weekly DPP-4 inhibitor for the treatment of patients with type 2 diabetes. Diabetes Care. 2015;38:2106–2114.
  • Gantz I, Lai E, Suryawhanshi S, et al. Omarigliptin, a once-weekly DPP-4 inhibitor, provides similar glycaemic control to sitagliptin in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetologia. 2015;58(Suppl 1):Abstract 110.
  • Scheen AJ. Which incretin-based therapy for type 2 diabetes? Lancet. 2014;384:1325–1327.
  • Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383:2008–2017.
  • Kumar A. Insulin degludec/liraglutide: innovation-driven combination for advancement in diabetes therapy. Expert Opin Biol Ther. 2014;14:869–878.
  • Berria R, Guerci B, Paranjape S, et al. Improved glucose control without increased hypoglycaemia risk with insulin glargine/lixisenatide fixed-ratio combination (LixiLan) vs insulin glargine alone. Diabetologia. 2015;58(Suppl 1):Abstract 111.
  • Aronson R. Optimizing glycemic control: lixisenatide and basal insulin in combination therapy for the treatment of type 2 diabetes mellitus. Expert Rev Clin Pharmacol. 2013;6:603–612.
  • Henry RR, Rosenstock J, Logan D, et al. Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complications. 2014;28:393–398.
  • Nauck MA, Petrie JR, Sesti G, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care. 2016;39:231–241.
  • Wang MW, Liu Q, Zhou CH. Non-peptidic glucose-like peptide-1 receptor agonists: aftermath of a serendipitous discovery. Acta Pharmacol Sin. 2010;31:1026–1030.
  • Yang DH, Zhou CH, Liu Q, et al. Landmark studies on the glucagon subfamily of GPCRs: from small molecule modulators to a crystal structure. Acta Pharmacol Sin. 2015;36:1033–1042.
  • Tomlinson B, Hu M, Zhang Y, et al. An overview of novel GLP-1 receptor agonists for type 2 diabetes. Exp Opin Investig Drug. 2016;25:145–158.
  • Pols TW, Auwerx J, Schoonjans K. Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease. Gastroenterol Clin Biol. 2010;34:270–273.
  • Kumar DP, Rajagopal S, Mahavadi S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun. 2012;427:600–605.
  • Briere DA, Ruan X, Cheng CC, et al. Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS One. 2015;10:e0136873.
  • Duan H, Ning M, Zou Q, et al. Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J Med Chem. 2015;58:3315–3328.
  • Zheng C, Zhou W, Wang T, et al. A novel TGR5 activator WB403 promotes GLP-1 secretion and preserves pancreatic beta-cells in type 2 diabetic mice. PLoS One. 2015;10:e0134051.
  • Tatarkiewicz K, Hargrove DM, Jodka CM, et al. A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents. Diabetes Obes Metab. 2014;16:75–85.
  • Petersen N, Reimann F, Van Es JH, et al. Targeting development of incretin-producing cells increases insulin secretion. J Clin Invest. 2015;125:379–385.
  • Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science. 2003;301:370–373.
  • Sarabu R, Bizzarro FT, Corbett WL, et al. Discovery of piragliatin – first glucokinase activator studied in type 2 diabetic patients. J Med Chem. 2012;55:7021–7036.
  • Bonadonna RC, Heise T, Arbet-Engels C, et al. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab. 2010;95:5028–5036.
  • Zhi J, Zhai S. Effects of piragliatin, a glucokinase activator, on fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2016;56:231–238.
  • Meininger GE, Scott R, Alba M, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2560–2566.
  • Kiyosue A, Hayashi N, Komori H, et al. Dose-ranging study with the glucokinase activator AZD1656 as monotherapy in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2013;15:923–930.
  • Wilding JP, Leonsson-Zachrisson M, Wessman C, et al. Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2013;15:750–759.
  • Katz L, Manamley N, Snyder W, et al. AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycemia in patients with type 2 diabetes. Diabetes Obes Metab. 2016; 18:191–195.
  • Chen L, Leng Y, Jin X, et al. Validating the dual modes of action of HMS5552, a novel pancreatic and hepatic-targeting glucokinase activator. Late breaking abstract presented at the 74th Scientific Meeting of the American Diabetes Association; 2014 Jun 13–17; San Francisco; 134–LB.
  • Chen L, Zhang Y, Jin X, et al. Clinical validation of the dual-modes of action of glucokinase activator HMS5552 for type 2 diabetes. Diabetes Metab Res Rev. 2014;30:6, Abstract O873.
  • Zhu D, Ding Y, Xiao D, et al. A novel dual pancreatic and hepatic acting glucokinase activator, HMS5552: phase I studies in healthy subjects and T2DM patients. Diabetes. 2015;64(Suppl 1):A300, Abstract 1165–P.
  • Zhu D, Ding Y, Xiao D, et al. Clinically differentiated glucokinase activator HMS5552: effective control of 24-hour glucose and improvement of ß-cell function in T2DM patients. Diabetes. 2015;64(Suppl 1):A301, Abstract 1167–P.
  • Valcarce C. TTP399, a liver selective glucose kinase activator (GKA) lowers glucose and does NOT increase lipids in subjects with type 2 diabetes mellitus (T2DM). Diabetes. 2014;63(Suppl 1):A32, Abstract number 122–OR.
  • Amin NB, Aggarwal N, Pall D, et al. Two dose-ranging studies with PF-04937319, a systemic partial activator of glucokinase, as add-on therapy to metformin in adults with type 2 diabetes. Diabetes Obes Metab. 2015;17:751–759.
  • Ramanathan V, Vachharajani N, Patel R, et al. GKM-001, a liver-directed/ pancreas-sparing glucokinase modulator (GKM), lowers fasting and post-prandial glucose without hypoglycemia in type 2 diabetic (T2D) patients. Diabetes. 2012;61:A76, Abstract 293–OR.
  • Kimura T, Sakurai K, Morino K, et al. Pharmacokinetics, pharmacodynamics and tolerability of a novel glucokinase activator TMG-123, after single oral ascending doses in Japanese healthy subjects (Abstract). Diabetologia. 2015;58:S18, Abstract 37.
  • Lloyd DJ, St Jean DJ Jr., Kurzeja RJ, et al. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature. 2013;504:437–440.
  • Du X, Hinklin RJ, Xiong Y, et al. C5-alkyl-2-methylurea-substituted pyridines as a new class of glucokinase activators. ACS Med Chem Lett. 2014;5:1284–1289.
  • Park K. Identification of YH-GKA, a novel benzamide glucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch Pharm Res. 2012;35:2029–2033.
  • Oh YS, Lee YJ, Park K, et al. Treatment with glucokinase activator, YH-GKA, increases cell proliferation and decreases glucotoxic apoptosis in INS-1 cells. Eur J Pharm Sci. 2014;51:137–145.
  • Matschinsky F, Liang Y, Kesavan P, et al. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest. 1993;92:2092–2098.
  • DeFronzo RA, Triplitt CL, Abdul-Ghani M, et al. Novel agents for the treatment of type 2 diabetes. Diabetes Spectrum. 2014;27:100–112.
  • Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem. 2014;14:585–602.
  • Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J Diabetes Investig. 2015;6:124–132.
  • Matschinsky FM. GKAs for diabetes therapy: why no clinically useful drug after two decades of trying? Trends Pharmacol Sci. 2013;34:90–99.
  • Filipski KJ, Pfefferkorn JA, A patent review of glucokinase activators and disruptors of the glucokinase–glucokinase regulatory protein interaction: 2011–2014. Expert Opin Ther Pat. 2014;24:875–891.
  • Matschinsky FM, Zelent B, Doliba NM, et al. Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handb Exp Pharmacol. 2011;203:357–401.
  • Georgy A, Zhai S, Liang Z, et al. Lack of potential pharmacokinetic and pharmacodynamic interactions between piragliatin, a glucokinase activator, and simvastatin in patients with T2DM. J Clin Pharmacol. 2015. doi:10.1002/jcph.640.
  • Zhi J, Zhai S, Georgy A, et al. Exploratory effects of a strong CYP3A inhibitor (ketoconazole), a strong CYP3A inducer (rifampicin), and a concomitant ethanol on piragliatin pharmacokinetics and pharmacodynamics in type 2 diabetic patients. J Clin Pharmacol. 2015. doi:10.1002/jcph.617.
  • Krentz AJ, Morrow L, Petersson M, et al. Effect of exogenously administered glucagon versus spontaneous endogenous counter-regulation on glycaemic recovery from insulin-induced hypoglycaemia in patients with type 2 diabetes treated with a novel glucokinase activator, AZD1656, and metformin. Diabetes Obes Metab. 2014;16:1096–1101.
  • Pfefferkorn JA. Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Exp Opin Drug Discov. 2013;8:319–330.
  • Erion DM, Lapworth A, Amor PA, et al. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats. PLoS One. 2014;9:e97139.
  • Pfefferkorn JA, Guzman-Perez A, Oates PJ, et al. Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy) pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus. Med Chem Commun. 2011;2:828–839.
  • Ashton KS, Andrews KL, Bryan MC, et al. Small molecule disruptors of the glucokinase-glucokinase regulatory protein interaction: 1. Discovery of a novel tool compound for in vivo proof-of-concept. J Med Chem. 2014;57:309–324.
  • Bourbeau MP, Ashton KS, Yan J, et al. Nonracemic synthesis of GK-GKRP disruptor AMG-3969. J Org Chem. 2014;79:3684–3687.
  • Hinklin RJ, Boyd SA, Chicarelli MJ, et al. Identification of a new class of glucokinase activators through structure-based design. J Med Chem. 2013;56:7669–7678.
  • Hinklin RJ, Aicher TD, Anderson DA, et al. Discovery of 2-pyridylureas as glucokinase activators. J Med Chem. 2014;57:8180–8186.
  • Park K, Lee BM, Hyun KH, et al. Discovery of 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3- methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus. Bioorg Med Chem. 2014;22:2280–2293.
  • Park K, Lee BM, Hyun KH, et al. Design and synthesis of acetylenyl benzamide derivatives as novel glucokinase activators for the treatment of T2DM. ACS Med Chem Lett. 2015;6:296–301.
  • Li Y, Tian K, Qin A, et al. Discovery of novel urea derivatives as dual-target hypoglycemic agents that activate glucokinase and PPARgamma. Eur J Med Chem. 2014;76:182–192.
  • Lu J, Lei L, Huan Y, et al. Design, synthesis, and activity evaluation of GK/PPARgamma dual-target-directed ligands as hypoglycemic agents. ChemMedChem. 2014;9:922–927.
  • Kaku K. Fasiglifam as a new potential treatment option for patients with type 2 diabetes. Expert Opin Pharmacother. 2013;14:2591–2600.
  • Burant CF, Viswanathan P, Marcinak J, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379:1403–1411.
  • Anunpindi R, Dixit A, Deshmukh N, et al. P11187, a potent and novel GPR40 agonist, potentiates glucose stimulated insulin secretion and improves glucose tolerance in rodent models of type 2 diabetes. Diabetes. 2014;63(Suppl 1):A456. Abstract 1763-P.
  • Takano R, Yoshida M, Inoue M, et al. Discovery of DS-1558: a potent and orally bioavailable GPR40 agonist. ACS Med Chem Lett. 2015;6:266–270.
  • Tanaka H, Yoshida S, Oshima H, et al. Chronic treatment with novel GPR40 agonists improve whole-body glucose metabolism based on the glucose-dependent insulin secretion. J Pharmacol Exp Ther. 2013;346:443–452.
  • Guo DY, Li DW, Ning MM, et al. Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Commun. 2015;466:740–747.
  • Gowda N, Dandu A, Singh J, et al. Treatment with CNX-011-67, a novel GPR40 agonist, delays onset and progression of diabetes and improves beta cell preservation and function in male ZDF rats. BMC Pharmacol Toxicol. 2013;14:28.
  • Sunil V, Verma MK, Oommen AM, et al. CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and islet insulin content in n-STZ rats and in islets from type 2 diabetic patients. BMC Pharmacol Toxicol. 2014;15:19.
  • Ma Z, Lin DC-H, Sharma R, et al. Discovery of the imidazole-derived GPR40 agonist AM-3189. Bioorg Med Chem Lett. 2016;26:15–20.
  • Ha TY, Kim YS, Kim CH, et al. Novel GPR119 agonist HD0471042 attenuated type 2 diabetes mellitus. Arch Pharm Res. 2014;37:671–678.
  • Oshima H, Yoshida S, Ohishi T, et al. Novel GPR119 agonist AS1669058 potentiates insulin secretion from rat islets and has potent anti-diabetic effects in ICR and diabetic db/db mice. Life Sci. 2013;92:167–173.
  • Nunez DJ, Bush MA, Collins DA, et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: results from two randomized studies. PLoS One. 2014;9:e92494.
  • He Y, Davis L, Bhad P, et al. LEZ763, a novel GPR119 agonist, increases GLP-1, GIP, PYY, and glucagon, but has minimal effects on glucose in patients with type 2 diabetes. Late breaking abstract presented at the 75th Scientific Meeting of the American Diabetes Association; 2015 Jun 5–9; Boston, MA; 122–LB.
  • Kim BG. LGLS120-A, a potent, selective, and structurally novel GPR120 agonist, provides superior glycemic control to DPP-4 inhibitor in animal model of type 2 diabetes. Diabetes. 2015;64(Suppl 1):A334, Abstract 1284–P.
  • Urban C, Hamacher A, Partke HJ, et al. In vitro and mouse in vivo characterization of the potent free fatty acid 1 receptor agonist TUG-469. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:1021–1030.
  • Hudson BD, Shimpukade B, Mackenzie AE, et al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol. 2013;84:710–725.
  • Sekiguchi H, Kasubuchi M, Hasegawa S, et al. A novel antidiabetic therapy: free fatty acid receptors as potential drug target. Current Diabetes Reviews. 2015;11:107–115.
  • Milligan G, Alvarez-Curto E, Watterson KR, et al. Characterizing pharmacological ligands to study the long-chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol. 2015;172:3254–3265.
  • Mancini AD, Poitout V, The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol Metab. 2013;24:398–407.
  • Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 2009;58:1067–1076.
  • Poitout V, Lin DC-H. Modulating GPR40: therapeutic promise and potential in diabetes. Drug Discov Today. 2013;18:1301–1308.
  • Feng XT, Leng J, Xie Z, et al. GPR40: a therapeutic target for mediating insulin secretion (review). Int J Mol Med. 2012;30:1261–1266.
  • Burant CF. Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care. 2013;36 Suppl 2:S175–S179.
  • Kaku K, Araki T, Yoshinaka R. Randomized, double-blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care. 2013;36:245–250.
  • Watterson KR, Hudson BD, Ulven T, et al. Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol (Lausanne). 2014;5:137.
  • Defossa E, Wagner M. Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett. 2014;24:2991–3000.
  • Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab. 2015;17:622–629.
  • Tanaka H, Yoshida S, Minoura H, et al. Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci. 2014;94:115–121.
  • Nakashima R, Yano T, Ogawa J, et al. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists. Eur J Pharmacol. 2014;737:194–201.
  • Ohishi T, Yoshida S. The therapeutic potential of GPR119 agonists for type 2 diabetes. Exp Opin Drug Discov. 2012;21:321–328.
  • Liu P, Hu Z, DuBois BG, et al. Design of potent and orally active GPR119 agonists for the treatment of type II diabetes. ACS Med Chem Lett. 2015;6:936–941.
  • Dai X, Stamford A, Liu H, et al. Discovery of the oxazabicyclo[3.3.1]nonane derivatives as potent and orally active GPR119 agonists. Bioorg Med Chem Lett. 2015;25:5291–5294.
  • Ichimura A, Hara T, Hirasawa A. Regulation of energy homeostasis via GPR120. Front Endocrinol (Lausanne). 2014;5:111.
  • Moran BM, Abdel-Wahab YH, Flatt PR, et al. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic beta-cells. Diabetes Obes Metab. 2014;16:1128–1139.
  • Suckow AT, Polidori D, Yan W, et al. Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J Biol Chem. 2014;289:15751–15763.
  • Zhang D, Leung PS. Potential roles of GPR120 and its agonists in the management of diabetes. Drug Des Devel Ther. 2014;8:1013–1027.
  • Cornall LM, Mathai ML, Hryciw DH, et al. GPR120 agonism as a countermeasure against metabolic diseases. Drug Discov Today. 2014;19:670–679.
  • Liu HD, Wang WB, Xu ZG, et al. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur J Pharmacol. 2015;763:160–168.
  • Winzell MS, Myhre S, Sundström L, et al. The glucose lowering effect of small molecule GPR120 agonists is driven by glucagon-like peptide-1. Diabetologia. 2015;58(Suppl 1):S272, Abstract 559.
  • Shimpukade B, Hudson BD, Hovgaard CK, et al. Discovery of a potent and selective GPR120 agonist. J Med Chem. 2012;55:4511–4515.
  • Li A, Li Y, Du L. Biological characteristics and agonists of GPR120 (FFAR4) receptor: the present status of research. Future Med Chem. 2015;7:1457–1468.
  • Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14:852–858.
  • Fouqueray P, Pirags V, Inzucchi SE, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36:565–568.
  • Fouqueray P, Pirags V, Diamant M, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care. 2014;37:1924–1930.
  • Fouqueray P, Bolze S, Pirags V, et al. Dose-ranging study to determine the optimum dose for imeglimin, a novel treatment for type 2 diabetes. Diabetes. 2015;64(Suppl 1):A301, Abstract 1169–P.
  • Fouqueray P, Bolze S, Pirags V, et al. Imeglimin, a new oral anti-hyperglycemic agent controls both fasting and post-prandial glucose through an improvement in both insulin secretion and insulin sensitivity. Poster presented at the 13rd World Congress on Insulin Resistance, Diabetes and Cardiovascular Diseases (WCIRDCVD); 2015 Nov 19–21; Los Angeles, CA.
  • Vuylsteke V, Chastain LM, Maggu GA, et al. Imeglimin: a potential new multi-target drug for type 2 diabetes. Drugs R&D. 2015;15:227–232.
  • Bolze S, Fouqueray P, Hallakou-Bozec S Imeglimin, a new mitochondria targeted agent for type 2 diabetes treatment. Oral presentation at World Congress on Targeting Mitochondria; 2015. Available from: http://journal.medsys-site.com/index.php/WMS/article/view/314.
  • Vial G, Chauvin MA, Bendridi N, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015;64:2254–2264.
  • Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucose-dependent insulin secretion and improves beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:541–545.
  • Robertson RP, Halter JB, Porte D Jr. A role for alpha-adrenergic receptors in abnormal insulin secretion in diabetes mellitus. J Clin Invest. 1976;57:791–795.
  • Broadstone VL, Pfeifer MA, Bajaj V, et al. Alpha-adrenergic blockade improves glucose-potentiated insulin secretion in non-insulin-dependent diabetes mellitus. Diabetes. 1987;36:932–937.
  • Ostenson CG, Pigon J, Doxey JC, et al. Alpha 2-adrenoceptor blockade does not enhance glucose-induced insulin release in normal subjects or patients with noninsulin-dependent diabetes. J Clin Endocrinol Metab. 1988;67:1054–1059.
  • Tang Y, Axelsson AS, Spegel P, et al. Genotype-based treatment of type 2 diabetes with an alpha2A-adrenergic receptor antagonist. Sci Transl Med. 2014;6(257):257ra139–257ra139.
  • Scheen AJ. Towards a genotype-based approach for a patient-centered pharmacologic therapy of type 2 diabetes. Ann Transl Med. 2015;3:S36.
  • Coughlan KA, Valentine RJ, Ruderman NB, et al. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metabol Syndr Obes. 2014;7:241–253.
  • Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol. 2013;366:127–134.
  • Dufer M, Noack K, Krippeit-Drews P, et al. Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse beta-cells. Islets. 2010;2:156–163.
  • Pasternak L, Meltzer-Mats E, Babai-Shani G, et al. Benzothiazole derivatives augment glucose uptake in skeletal muscle cells and stimulate insulin secretion from pancreatic beta-cells via AMPK activation. Chem Commun (Camb). 2014;50:11222–11225.
  • Kim JW, You YH, Ham DS, et al. The paradoxical effects of AMPK on insulin gene expression and glucose-induced insulin secretion. J Cell Biochem. 2016;117:239–246.
  • Sugawara K, Shibasaki T, Takahashi H, et al. Structure and functional roles of Epac2 (Rapgef4). Gene. 2016;575:577–583.
  • Shibasaki T, Takahashi T, Takahashi H, et al. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. Diabetes Obes Metab. 2014;16 Suppl 1:118–125.
  • Song WJ, Mondal P, Li Y, et al. Pancreatic beta-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes. 2013;62:2796–2807.
  • Ohtani M, Ohura K, Oka T. Involvement of P2X receptors in the regulation of insulin secretion, proliferation and survival in mouse pancreatic beta-cells. Cell Physiol Biochem. 2011;28:355–366.
  • Pacheco PA, Ferreira LG, Alves LA, et al. Modulation of P2 receptors on pancreatic beta-cells by agonists and antagonists: a molecular target for type 2 diabetes treatment. Curr Diab Rev. 2013;9:228–236.
  • Burnstock G, Novak I. Purinergic signalling and diabetes. Purinergic Signal. 2013;9:307–324.
  • Tengholm A. Purinergic P2Y1 receptors take centre stage in autocrine stimulation of human beta cells. Diabetologia. 2014;57:2436–2439.
  • Ojo OO, Abdel-Wahab YH, Flatt PR, et al. Tigerinin-1R: a potent, non-toxic insulin-releasing peptide isolated from the skin of the Asian frog, Hoplobatrachus rugulosus. Diabetes Obes Metab. 2011;13:1114–1122.
  • Srinivasan DK, Ojo OO, Owolabi BO, et al. [I10W]tigerinin-1R enhances both insulin sensitivity and pancreatic beta cell function and decreases adiposity and plasma triglycerides in high-fat mice. Acta Diabetol. 2015.. doi:10.1007/s00592-015-0783-3.
  • Ojo OO, Srinivasan DK, Owolabi BO, et al. Beneficial effects of tigerinin-1R on glucose homeostasis and beta cell function in mice with diet-induced obesity-diabetes. Biochimie. 2015;109:18–26.
  • Srinivasan D, Ojo OO, Abdel-Wahab YHA, et al. Insulin-releasing and cytotoxic properties of the frog skin peptide, tigerinin-1R: a structure–activity study. Peptides. 2014;55:23–31.
  • Nguyen TTN, Folch B, Letourneau M, et al. Cardiotoxin-I: an unexpectedly potent insulinotropic agent. Chembiochem. 2012;13:1805–1812.
  • Nguyen TTN, Folch B, Letourneau M, et al. Design of a truncated cardiotoxin-I analogue with potent insulinotropic activity. J Med Chem. 2014;57:2623–2633.
  • Zhang F, Dey D, Branstrom R, et al. BLX-1002, a novel thiazolidinedione with no PPAR affinity, stimulates AMP-activated protein kinase activity, raises cytosolic Ca2+, and enhances glucose-stimulated insulin secretion in a PI3K-dependent manner. Am J Physiol Cell Physiol. 2009;296:C346–C354.
  • Zhang Q, Zhang F, Sjoholm A. BLX-1002 restores glucose sensitivity and enhances insulin secretion stimulated by GLP-1 and sulfonylurea in type 2 diabetic pancreatic islets. Physiol Rep. 2014;2:e12014–e12014.
  • Shaghafi MB, Barrett DG, Willard FS, et al. The insulin secretory action of novel polycyclic guanidines: discovery through open innovation phenotypic screening, and exploration of structure-activity relationships. Bioorg Med Chem Lett. 2014;24:1031–1036.
  • Ludwig B, Barthel A, Reichel A, et al. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. Vitam Horm. 2014;95:195–222.
  • Song I, Muller C, Louw J, et al. Regulating the beta cell mass as a strategy for type-2 diabetes treatment. Curr Drug Targets. 2015;16:516–524.
  • Tortosa F, Dotta F. Incretin hormones and beta-cell mass expansion: what we know and what is missing? Arch Physiol Biochem. 2013;119:161–169.
  • Takebayashi K, Inukai T. Effect of proton pump inhibitors on glycemic control in patients with diabetes. World J Diabetes. 2015;6:1122–1131.
  • Boj-Carceller D. Proton pump inhibitors: impact on glucose metabolism. Endocrine. 2013;43:22–32.
  • Inci F, Atmaca M, Ozturk M, et al. Pantoprazole may improve beta cell function and diabetes mellitus. J Endocrinol Invest. 2014;37:449–454.
  • Gonzalez-Ortiz M, Martinez-Abundis E, Mercado-Sesma AR, et al. Effect of pantoprazole on insulin secretion in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract. 2015;108:e11–e13.
  • Hove KD, Brons C, Faerch K, et al. Effects of 12 weeks’ treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia. 2013;56:22–30.
  • Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes Metab Syndr Obes. 2015;8:79–87.
  • Purwana I, Zheng J, Li X, et al. GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes. 2014;63:4197–4205.
  • Tian J, Dang H, Chen Z, et al. Gamma-aminobutyric acid regulates both the survival and replication of human beta-cells. Diabetes. 2013;62:3760–3765.
  • Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci. 2015;72:453–467.
  • Rutter GA, Hodson DJ. Minireview: intraislet regulation of insulin secretion in humans. Mol Endocrinol. 2013;27:1984–1995.
  • Cigliola V, Chellakudam V, Arabieter W, et al. Connexins and beta-cell functions. Diabetes Res Clin Pract. 2013;99:250–259.
  • Hedrington MS, Davis SN. Discontinued in 2013: diabetic drugs. Expert Opin Investig Drugs. 2014;23:1703–1711.
  • Colca JR. Discontinued drug therapies to treat diabetes in 2014. Expert Opin Investig Drugs. 2015;24:1241–1245.
  • Neithercott T. The future is near. 14 diabetes products suggest big things to come. Diabetes Forecast. 2015;68:33–35.
  • Ahren B, Creative use of novel glucose-lowering drugs for type 2 diabetes: where will we head in the next 50 years? Diabetologia. 2015;58:1740–1744.
  • Kahn SE, Buse JB. Medications for type 2 diabetes: how will we be treating patients in 50 years? Diabetologia. 2015;58:1335–1339.
  • Weir GC, Bonner-Weir S. Islet beta cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci. 2013;1281:92–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.