24
Views
1
CrossRef citations to date
0
Altmetric
Review

Antigen-based immune modulation: DNA vectors and beyond

, &
Pages 929-942 | Published online: 23 Feb 2005

Bibliography

  • OHASHI PS: T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat. Rev Innnunel. (2002) 2(6): 427–438.
  • MC DEVITT HO: The role of MHC classII molecules in susceptibility and resistance to autoimmunity. Curt: Opin. Ipanunel.(1998) 10(6):677–681.
  • GARCHON HJ: Non-MHC-linked genes in autoimmune diseases. Curt: Opin. Ipanunel. (1993) 5(6):894–899.
  • LUDEWIG B, JUNT T,HENGARTNER H, ZINKERNAGEL RM:Dendritic cells in autoimmune diseases. Cup:Opin. Ipanunel. (2001) 13(6):657–662.
  • OLDSTONE MB: Molecular mimicry and immune-mediated diseases. FASEB.I. (1998) 12(13):1255–1265.
  • HEROLD KC, HAGOPIAN W, AUGER JA et al.: Anti-CD3 monoclonal antibody in new-onset Type 1 diabetes mellitus. N Engl. J. Med. (2002) 346(22):1692–1698.
  • •Clinical trial data showing preservation of islet functional capacity.
  • ALLDRED A: Etanercept in rheumatoid arthritis. Expert. Opin. Phannacother. (2001) 2(7):1137–1148.
  • BIELEKOVA B, GOODWIN B, RICHERT N et al.: Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand. Nat. Med. (2000) 6(10):1167–1175.
  • •Describes the pleiotropic and unexpected effects of MBP 83–99 in patients with MS.
  • PEDOTTI R, MITCHELL D, WEDEMEYER J et al.: An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol. (2001) 2(3):216–222.
  • SERREZE DV, LEITER EH: Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr. Opin. Immunol. (1994) 6(6):900–906.
  • •Excellent review on mechanisms that result in islet destruction.
  • ROSMALEN JG, VAN EWIJK W, LEENEN PJ: T-cell education in autoimmune diabetes: teachers and students. Trends Immunol. (2002) 23 (1) : 40–46.
  • VON BOEHMER H, JAECKEL E: Peripheral tolerance and organ specific autoimmunity. Adv. Exp. Med. Biol. (2001) 490:41–48.
  • DANIEL D, WEGMANN DR: Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B- (9-23). Proc. Nati Acad. Sci. USA (1996) 93(2):956–960.
  • •Seminal study, describing the context in which InsB chain suppresses diabetes in NOD mice.
  • COON B, AN LL, WHITTON JL, VON HERRATH MG: DNA immunization to prevent autoimmune diabetes.' Clin. Invest. (1999) 104:189–194.
  • ••The initial study describing suppression ofautoimmune diabetes and bystander regulation achieved by plasmid vaccination.
  • BOT A, SMITH D, BOT S et al.: Plasmid vaccination with insulin B chain prevents autoimmune diabetes in NOD mice. Immunol. (2001) 167:2950–2955.
  • •Study describing protection against autoimmune diabetes in NOD mice, by a plasmid expressing a human/mouse epitope.
  • NITTA Y, TASHIRO F, TOKUI M et al.:Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Hum. Gene. Ther. (1998) 9(12):1701–1707.
  • •Study showing that continuous exposure to low doses of IL-10 results in suppression of autoirnmunity.
  • GOUDY K, SONG S, WASSERFALL C et al.: Adeno-associated virus vector-mediated IL-10 gene delivery prevents Type 1 diabetes in NOD mice. Proc. Nati Acad. Sci. USA (2001) 98(24):13913–13918.
  • TOMINAGA Y, NAGATA M, YASUDA H et al.: Administration of IL-4 prevents autoimmune diabetes but enhances pancreatic insulitis in NOD mice. ChP. Immunol. Immunopathol. (1998) 86(2):209–218.
  • •Study showing that continuous exposure to low doses of IL-10 results in suppression of autoirnmunity.
  • CAMERON MJ, ARREAZA GA, WALDHAUSER L, GAULDIE J, DELOVITCH TL: Immunotherapy of spontaneous Type 1 diabetes in nonobese diabetic mice by systemic interleukin-4 treatment employing adenovirus vector-mediated gene transfer. Gene The]: (2000) 7(21):1840–1846.
  • TRINCHIERI G: Proinflammatory and immunoregulatory functions of interleukin-12. mt. Rev Immunol. (1998) 16(3-4):365–396.
  • •A review describing the Ti-biasing effect of IL-12.
  • LECHLER R, CHAI JG, MARELLI-BERG F, LOMBARDI G: T-cell anergy and peripheral T-cell tolerance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. (2001) 356(1409):625–637.
  • CROFT M: Activation of naive, memory and effector T cells. Curt: Opin. Immunol. (1994) 6(3):431–437.
  • RATHMELL JC, THOMPSON CB: Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell (2002) 109(Suppl.):S97–S107.
  • VAN PARIJS L, PEREZ VL,BIUCKIANS A, MAKI RG, LONDON CA, ABBAS AK: Role of interleukin 12 and costimulators in T cell anergy in vivo. " Exp. Med. (1997) 186(7):1119–1128.
  • TISCH R, YANG XD, LIBLAU RS, MC DEVITT HO: Administering glutamic acid decarboxylase to NOD mice prevents diabetes. Autoimmun. (1994)7(6)845–850.
  • •Study demonstrating the potential of GAD, a major target for autoreactive T cells, to affect upon disease.
  • MILLER A, LIDER 0, ROBERTS AB,SPORN MB, WEINER HL: Suppressor T cells generated by oral tolerization to myelin basic protein suppress both M vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc. Nati Acad. Sci. USA (1992) 89(1):421–425.
  • •Oral administration of antigen induces bystander regulation.
  • HOMANN D, HOLZ A, BOT A et al.:Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity (1999) 11 (4):463–472.
  • •Bystander regulation subsequent to oral administration of antigen depends on IL-4R/STAT-6 signalling pathway.
  • Diabetes Prevention Trial-TYPE 1 DIABETES STUDY GROUP: Effects of insulin in relatives of patients with Type 1 diabetes mellitus. N Engl. Med. (2002) 346 (22):1685–1691.
  • WEINER HL, MACKIN GA, MATSUI M: Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science (1993) 259(5099):1321–1324.
  • ••Clinical data showing limited effect of oraladministration of MBP on MS.
  • MACDONALD TT: Effector and regulatory lymphoid cells and cytokines in mucosal sites. Curt Top. Microbial. Immunol. (1999) 236:113–135.
  • RONCAROLO MG, BACHETTA R, BORDIGNON C, NARULA S, LEVINGS MK: Type 1 T regulatory cells. Immunol. Rev (2001) 182:68–79.
  • GORELIK L, FLAVELL RA: Transforming growth factor-beta in T-cell biology. Nature. Rev Immunol. (2002) 2(1):46–53.
  • GENAIN CP, ABEL K, BEMAR N et al.:Late complications of immune deviation therapy in a non-human primate. Science (1996) 274:2054–2057.
  • •This study describes unexpected side effects of antigen-based immune modulation in primates.
  • TIAN J, LEHMANN PV, KAUFMAN DL: Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. I Exp. Med. (1997) 186(12):2039–2043.
  • •This manuscript shows that bystander regulation can result in epitope spreading of non-pathogenic T cells.
  • SERREZE DV, CHAPMAN HD, POST CM, JOHNSON EA, SUAREZ-PINZON WL, RABINOVITCH A: Thl to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. I Immunol (2001) 166(2):1352–1329.
  • PAZ I, ELIAS D, AVRON A, TAMIR M, METZGER M, COHEN IR: Beta-cell function in new-onsetType 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, Phase II trial. Lancet (2001) 358(9295):1749–1753.
  • ••This study shows that peptide-basedimmunomodulation is of potential value in human autoimmune diabetes.
  • ELIAS D, MARKOVITS D, RESHEF T, VAN DER ZEE R, COHEN IR: Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA (1990) 87(4):1576–1580.
  • VABULAS RM, AHMAD-NEJAD P, DA COSTA C: Endocytosed HSP6Os use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. Biol. Chem. (2001) 276(33):31332–31339.
  • LIU MA, ULMER JB: Gene-based vaccines. Mol. Ther. (2000) 1(6):497–500.
  • ••An excellent review on DNA vaccination.
  • BOT A, STAN AC, INABA K,STEINMAN R, BONA C: Dendritic cells at a DNA vaccination site express the encoded influenza nucleoprotein and prime MHC class I-restricted cytolytic lymphocytes upon adoptive transfer. mt. Immunol. (2000) 12 (6):825–832.
  • ULMER JB, DONNELLY JJ, PARKER SE et al.: Heterologous protection against influenza by injection of DNA encoding a viral protein. Science (1993)259(5102): 1745–1749.
  • •Study showing induction of T cell immunity to a viral antigen delivered via plasmid.
  • FYNAN EF, WEBSTER RG, FULLER DH,HAYNES JR, SANTORO JC, ROBINSON HL: DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Nati Acad. Sri. USA (1993) 90(24):11478–11482.
  • •Study demonstrating the induction of a broad array of immune effectors by DNA vaccination.
  • SATO Y, ROMAN M, TIGHE H etal.: Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science (1996) 273(5273):352–324.
  • AMARA RR, VILLINGER F, ALTMAN JD et al.: Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science (2001) 292(5514):69–74.
  • MC CLUSKIE MJ, WEERATNA RD, DAVIS HL: The potential of oligodeoxynucleotides as mucosal and parenteral adjuvants. Vaccine (2001) 19(17-19):2657–2560.
  • •A review dedicated to the practical use of irnmunostirnmulatory CpG motifs.
  • KRIEG AM, YI AK, SCHORR J,DAVIS HL: The role of CpG dinucleotides in DNA vaccines. Trends Microbiol.(1998) 6:23–27.
  • •A review approaching the stimulatory role of CpG motifs in the context of DNA vaccines.
  • HEMMI H, TAKEUCHI 0, KAWAI T etal.: A Toll-like receptor recognizes bacterial DNA. Nature (2000) 408 (6813):740–745.
  • ••Research paper demonstrating that TLR-9is the major receptor of CpG motifs.
  • RAGNO, S, COLSTON, MJ, LOWRIE DB, WINROW VR, BLAKE DR, TASCON R: Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritic Rheum. (1997) 40:277–283.
  • •Initial study showing that plasmid-based antigen administration can suppress destructive autoirnmunity.
  • RAMSHAW IA, FORDHAM SA, BERNARD CC, MAGUIRE D, COWDEN WB, WILLENBORG DO: DNA vaccines for the treatment of autoimmune diseases. Immunol. Cell. Biol. (1997) 75:409–413.
  • LOBELL A, WEISSERT R, STORCH MK etal.: Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. Exp. Med. (1998) 187:1543–1548.
  • •Initial study in the Lewis rat model of MS,showing that plasmid-based delivery of an antigen construct can suppress destructive autoirnmunity.
  • ZAGHOUANI H, STEINMAN R, NONACS R, SHAH H, GERHARDW, BONA C: Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science (1993) 259:224–227.
  • SUTTERWALA FS, NOEL GJ, SALGAME P, MOSSER DM: Reversal of proinflammatory responses by ligating the macrophage Fcy receptor Type I. Exp. Med. (1998) 188:217–222.
  • WEISSERT R, LOBELL A, DE GRAAF KL et al.: Protective DNA vaccination against organ-specific autoimmunity is highly specific and discriminates between single amino acid substitutions in the peptide autoantigen. Proc. Natl. Acad. Sci. USA (2000) 97:1689–1694.
  • LOBELL A, WEISSERT R, ELTAYEB S, SVANHOLM C, OLSSON T, WIGZELL H: Presence of CpG DNA and the local cytokine milieu determine the efficacy of supressive DNA vaccination in experimental autoimmune encephalomyelitis. Immunol. (1999) 163:4754–4762.
  • •Describes the unexpected observation that CpG motifs may be beneficial for the irnmunomodulatory effect of plasmids.
  • RUIZ PJ, GARREN H, RUIZ IU et al.:Supressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. Immunol. (1999) 162:3336–3341.
  • GARREN H, RUIZ PJ, WATKINS TA et al.: Combination of gene delivery and DNA vaccination to protect from and reverse Thl autoimmune disease via deviation to the Th2 pathway. Immunity (2001) 15(1):15–22.
  • •This study shows the beneficial effect of a biological response modifier co-delivered with the antigen by plasmid vaccination.
  • TOLLEY ND, TSUNODA I,FUJINAMI RS: DNA vaccination against Theiler's murine encephalomyelitis virus leads to alterations in demyelinating disease. JVirol. (1999) 73:993–1000.
  • •This study shows the aggravating effect of DNA vaccination in a viral model of central nervous disease, raising potential concerns.
  • TISCH R, WANG B, WEAVER DJ et al.:Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. brununol. (2001) 166:2122-2132.This study describes in detail the effect of vaccination with a GAD-based construct together with a biological response modifier in NOD mice.
  • WEAVER DJ JR, LIU B, TISCH R: Plasmid DNAs encoding insulin and glutamic acid decarboxylase 65 have distinct effects on the progression of autoimmune diabetes in nonobese diabetic mice.brununol. (2001) 167(1):586–592.
  • URBANEK-RUIZ I, RUIZ PJ, PARAGAS V, GARREN H, STEINMAN L, FATHMAN CG: Immunization with DNA encoding an immunodominant peptide of insulin prevents diabetes in NOD mice. Chia brununol. (2001) 100(2):164–171.
  • •This study demonstrates the ability of a plasmid expressing the dominant InsB 9–23 epitope to suppress the disease in NOD mice.
  • PAZ E, TIGHE H, SATO Y et al: Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Nati Acad. Sci. USA (1996) 93:5141–5145.
  • QUINTANA FJ, ROTEM A, CARMI P, COHEN IR: Vaccination with empty plasmid DNA or CpG oligodeoxynucleotides against diabetes in nonobese diabetic mice: modulation of spontaneous heat shock protein autoimmunity. I Inununol (2000) 165:6148–6155.
  • BALASA B, BOEHM BO, FORTNAGEL A et al.: Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection.Chia brununol. (2001) 99(2):241–252.
  • FILIPPOVA M, LIU J, ESCHER A: Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice. DNA Cell Biol. (2001) 20(3):175–181.
  • NEPOM GT: HLA and Type I diabetes. brununol. Today (1990) 11(9):314–315.
  • •An classic review on the association between MHC alleles and diabetes.
  • KAUFMAN DL, CLARE-SALZER M, TIAN J et al.: Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature(1993) 366(6450):69–72.This research paper describes GAD as a major autoantigen in a NOD mouse model of autoimmune diabetes.
  • TSUNODA I, KUANG LQ, TOLLEY ND, WHITTON JL, FUJINAMI RS:Enhancement of experimental allergic encephalomyelitis (EAE) by immunization with myelin proteolipid protein (PLP) plasmid DNA. I Neuropathol Exp. Neuroi (1998) 57:758–767.
  • •A study underlining the potential for deleterious effects subsequent to plasmid vaccination.
  • BOCCACCIO GL, MOR F,STEINMAN L: Non-coding plasmid DNA induces IFN-gamma in vivo and suppresses autoimmune encephalomyelitis. Int. brununol. (1999) 11:289–296.
  • QUINTANA FJ, ROTEM A, CARMI P, COHEN IR: Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. I brununol. (2000) 165(11):6148–6155.
  • TSUNODA I, TOLLEY ND, THEIL DJ, WHITTON JL, KOBAYASHI H, FUJINAMI K: Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol (1999) 9:481–493.
  • •A study comparing the deleterious effect of plasmid vaccination in viral and autoimmune models of MS.
  • MENGES M, ROSSNER S,VOIGTLANDER C et al.: Repetitiveinjections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. I Exp. Med. (2002) 195(1):15–21.
  • ••A research paper describing different stagesin the differentiation of DC, compatible with induction of regulatory or activatory T cells.
  • BOUR-JORDAN H, BLUESTONE JA: CD28 function: a balance of costimulatory and regulatory signals. Clin. hannunol (2002) 22(1):1–7.
  • KLINMAN DM, TAKESHITA F, KAMSTRUP S et al.: DNA vaccines: capacity to induce auto-immunity and tolerance. Dev. Biol. (Basel) (2000) 104:45–51.
  • •A review on the potential outcomes, including tolerance, of DNA vaccination.
  • BAUER S, KIRSCHNING CJ,HACKER H et al: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Nati Acad. Sci. USA (2001) 98(16):9237–9242.
  • ••A research paper establishing the species-specificity of CpG motifs.
  • KRIEG AM, MATSON S, CHENG K, FISHER E, KORETZKY GA,KOLAND JG: Identification of an oligodeoxynucleotide sequence motif that specifically inhibits phosphorylation by protein tyrosine kinases. Antisense Nucleic Acid Drug Dev. (1997) 7(2):115–123.
  • ••A research paper describing CpG motifswith potential inhibitory function.
  • ISHII KJ, WEISS WR, KLINMAN DM: Prevention of neonatal tolerance by a plasmid encoding granulocyte-macrophage colony stimulating factor. Vaccine (1999) 18(7-8):703–710.
  • BOT A, ANTOHI S, BOT S, GARCIA-SASTRE A, BONA C: Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. hat Inununol. (1997) 9:1641–1650.
  • •Research paper describingimmunemodulation subsequent to plasmid vaccination with the InsB chain.
  • XIANG ZQ, ERTL HC: Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Inununih, (1995) 2:129–135.
  • SELMAJ K, KOWAL C, WALCZAC A, NOWICKA J, RAINE CS: Naked DNA vaccination differentially modulates autoimmune processes in experimental autoimmune encephalomyelitis.Neuronannunoi (2000) 111:34–44.
  • •A research paper describing pleiotropic effects of plasmid vaccination in a model of MS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.