525
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Current advances in cell therapy strategies for muscular dystrophies

, , , , &
Pages 157-176 | Published online: 10 Jan 2011

Bibliography

  • Spalding KL, Bhardwaj RD, Buchholz BA, Retrospective birth dating of cells in humans. Cell 2005;122:133-43
  • Bushby K, Lochmuller H, Lynn S, Straub V. Interventions for muscular dystrophy: molecular medicines entering the clinic. Lancet 2009;374:1849-56
  • Kaplan JC. Gene table of monogenic neuromuscular disorders (nuclear genome only). Neuromuscul Disord 2009;19:77-98
  • Kumar A, Khandelwal N, Malya R, Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 2004;18:102-13
  • Seno MM, Trollet C, Athanasopoulos T, Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization. BMC Genomics 2010;11:345
  • Sweeney HL, Barton ER. The dystrophin-associated glycoprotein complex: what parts can you do without? Proc Natl Acad Sci USA 2000;97:13464-6
  • Khurana TS, Davies KE. Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2003;2:379-90
  • Mozzetta C, Minetti G, Puri PL. Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy. Int J Biochem Cell Biol 2009;41:701-10
  • Le Roy F, Charton K, Lorson CL, Richard I. RNA-targeting approaches for neuromuscular diseases. Trends Mol Med 2009;15:580-91
  • Trollet C, Athanasopoulos T, Popplewell L, Gene therapy for muscular dystrophy: current progress and future prospects. Expert Opin Biol Ther 2009;9:849-66
  • Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther 2010;17:295-304
  • Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 2007;1772:243-62
  • Price FD, Kuroda K, Rudnicki MA. Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 2007;1772:272-83
  • Tedesco FS, Dellavalle A, Diaz-Manera J, Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 2010;120:11-19
  • Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 1978;273:306-8
  • Morgan JE, Watt DJ, Sloper JC, Partridge TA. Partial correction of an inherited biochemical defect of skeletal muscle by grafts of normal muscle precursor cells. J Neurol Sci 1988;86:137-47
  • Watt DJ, Lambert K, Morgan JE, Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 1982;57:319-31
  • Watt DJ, Morgan JE, Partridge TA. Use of mononuclear precursor cells to insert allogeneic genes into growing mouse muscles. Muscle Nerve 1984;7:741-50
  • Katz B. The terminations of the afferent nerve fibre in the muscle spindles of the frog. Philos Trans R Soc Lond B Biol Sci 1961;243:221-40
  • Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493-5
  • Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol 2003;35:1151-6
  • Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 2006;54:1177-91
  • Cardasis CA, Cooper GW. An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool 1975;191:347-58
  • Renault V, Thornell LE, Eriksson PO, Regenerative potential of human skeletal muscle during aging. Aging Cell 2002;1:132-9
  • Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010;58:941-55
  • Lindstrom M, Thornell LE. New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 2009;132:141-57
  • Reimann J, Brimah K, Schroder R, Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 2004;315:233-42
  • Baroffio A, Bochaton-Piallat ML, Gabbiani G, Bader CR. Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 1995;59:259-68
  • Baroffio A, Hamann M, Bernheim L, Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 1996;60:47-57
  • Heslop L, Morgan JE, Partridge TA. Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 2000;113:2299-308
  • Partridge TA, Morgan JE, Coulton GR, Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989;337:176-9
  • Morgan JE, Hoffman EP, Partridge TA. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 1990;111:2437-49
  • Kinoshita I, Huard J, Tremblay JP. Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation. Muscle Nerve 1994;17:975-80
  • Kinoshita I, Vilquin JT, Guerette B, Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve 1994;17:1407-15
  • Huard J, Tremblay G, Verreault S, Utilization of an antibody specific for human dystrophin to follow myoblast transplantation in nude mice. Cell Transplant 1993;2:113-18
  • Huard J, Verreault S, Roy R, High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice. J Clin Invest 1994;93:586-99
  • Beauchamp J, Morgan J, Pagel C, Partridge T. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999;144:1113-22
  • Morgan JE, Pagel CN, Sherratt T, Partridge TA. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci 1993;115:191-200
  • Skuk D, Goulet M, Roy B, Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006;65:371-86
  • Skuk D, Goulet M, Roy B, First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 2007;17:38-46
  • Neumeyer AM, DiGregorio DM, Brown RH Jr. Arterial delivery of myoblasts to skeletal muscle. Neurology 1992;42:2258-62
  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007;9:255-67
  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007;129:999-1010
  • Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006;8:677-87
  • Gilbert PM, Havenstrite KL, Magnusson KE, Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010;329:1078-81
  • Cerletti M, Jurga S, Witczak CA, Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 2008;134:37-47
  • Montarras D, Morgan J, Collins C, Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005;309:2064-7
  • Sacco A, Doyonnas R, Kraft P, Self-renewal and expansion of single transplanted muscle stem cells. Nature 2008;456:502-6
  • Tanaka KK, Hall JK, Troy AA, Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 2009;4:217-25
  • Collins CA, Olsen I, Zammit PS, Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005;122:289-301
  • De Angelis L, Berghella L, Coletta M, Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 1999;147:869-78
  • Sampaolesi M, Torrente Y, Innocenzi A, Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003;301:487-92
  • Cossu G, Bianco P. Mesoangioblasts – vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 2003;13:537-42
  • Sampaolesi M, Blot S, D'Antona G, Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006;444:574-9
  • Crisan M, Yap S, Casteilla L, A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301-13
  • Koyanagi M, Iwasaki M, Rupp S, Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts. Circ Res 2010;106:1290-302
  • Zheng B, Cao B, Crisan M, Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 2007;25:1025-34
  • Torrente Y, Belicchi M, Sampaolesi M, Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004;114:182-95
  • Shi M, Ishikawa M, Kamei N, Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells 2009;27:949-60
  • Benchaouir R, Meregalli M, Farini A, Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007;1:646-57
  • Negroni E, Riederer I, Chaouch S, In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 2009;17:1771-8
  • Vauchez K, Marolleau JP, Schmid M, Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 2009;17:1948-58
  • Bianco P, Robey PG, Saggio I, Riminucci M. “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 2010;21:1057-66
  • Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739-49
  • Jackson WM, Nesti LJ, Tuan RS. Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opin Biol Ther 2010;10:505-17
  • Dominici M, Le Blanc K, Mueller I, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-17
  • Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009;11:377-91
  • Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007;213:341-7
  • Goudenege S, Pisani DF, Wdziekonski B, Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 2009;17:1064-72
  • Rodriguez AM, Pisani D, Dechesne CA, Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 2005;201:1397-405
  • Meng J, Adkin CF, Arechavala-Gomeza V, The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul Disord 2010;20:6-15
  • De Bari C, Dell'Accio F, Vandenabeele F, Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003;160:909-18
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7
  • Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007;25:1177-81
  • Takahashi K, Tanabe K, Ohnuki M, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72
  • Bodnar MS, Meneses JJ, Rodriguez RT, Firpo MT. Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev 2004;13:243-53
  • Barberi T, Bradbury M, Dincer Z, Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 2007;13:642-8
  • Chidgey AP, Boyd RL. Immune privilege for stem cells: not as simple as it looked. Cell Stem Cell 2008;3:357-8
  • Swijnenburg RJ, Tanaka M, Vogel H, Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005;112(9 Suppl):I166-72
  • Yamanaka S, Li J, Kania G, Pluripotency of embryonic stem cells. Cell Tissue Res 2008;331:5-22
  • Ichida JK, Blanchard J, Lam K, A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 2009;5:491-503
  • Kim D, Kim CH, Moon JI, Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4:472-6
  • Okita K, Nakagawa M, Hyenjong H, Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-53
  • Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 2009;27:459-61
  • Park IH, Arora N, Huo H, Disease-specific induced pluripotent stem cells. Cell 2008;134:877-86
  • Yamanaka S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 2010;7:1-2
  • Darabi R, Baik J, Clee M, Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Exp Neurol 2009;220:212-16
  • Mizuno Y, Chang H, Umeda K, Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 2010;24:2245-53
  • Zhu CH, Mouly V, Cooper RN, Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 2007;6:515-23
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42
  • Athanasopoulos T, Graham IR, Foster H, Dickson G. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 2004;11(Suppl 1):S109-21
  • Foster H, Sharp PS, Athanasopoulos T, Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther 2008;16:1825-32
  • Bachrach E, Li S, Perez AL, Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA 2004;101:3581-6
  • Quenneville SP, Chapdelaine P, Skuk D, Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther 2007;15:431-8
  • Pichavant C, Chapdelaine P, Cerri DG, Expression of dog microdystrophin in mouse and dog muscles by gene therapy. Mol Ther 2010;18:1002-9
  • Ikemoto M, Fukada S, Uezumi A, Autologous transplantation of SM/C-2.6+ satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 2007;15:2178-85
  • Ghahramani Seno MM, Graham IR, Athanasopoulos T, RNAi-mediated knockdown of dystrophin expression in adult mice does not lead to overt muscular dystrophy pathology. Hum Mol Genet 2008;17:2622-32
  • Lai Y, Thomas GD, Yue Y, Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 2009;119:624-35
  • Kazuki Y, Hiratsuka M, Takiguchi M, Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 2010;18:386-93
  • Quenneville SP, Chapdelaine P, Rousseau J, Tremblay JP. Dystrophin expression in host muscle following transplantation of muscle precursor cells modified with the phiC31 integrase. Gene Ther 2007;14:514-22
  • Kinali M, Arechavala-Gomeza V, Feng L, Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009;8:918-28
  • van Deutekom JC, Janson AA, Ginjaar IB, Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007;357:2677-86
  • Chaouch S, Mouly V, Goyenvalle A, Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Hum Gene Ther 2009;20:784-90
  • Wein N, Avril A, Bartoli M, Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 2010;31:136-42
  • Chapdelaine P, Pichavant C, Rousseau J, Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 2010;17:846-58
  • de la Garza-Rodea AS, van der Velde I, Boersma H, Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010: published online 18 Aug 2010, doi: 10.3727/096368910X522117
  • Gerard X, Vignaud L, Charles S, Real-time monitoring of cell transplantation in mouse dystrophic muscles by a secreted alkaline phosphatase reporter gene. Gene Ther 2009;16:815-19
  • Baligand C, Vauchez K, Fiszman M, Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Ther 2009;16:734-45
  • Willmann R, Possekel S, Dubach-Powell J, Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul Disord 2009;19:241-9
  • Vainzof M, Ayub-Guerrieri D, Onofre PC, Animal models for genetic neuromuscular diseases. J Mol Neurosci 2008;34:241-8
  • Allamand V, Campbell KP. Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum Mol Genet 2000;9:2459-67
  • Shelton GD, Engvall E. Canine and feline models of human inherited muscle diseases. Neuromuscul Disord 2005;15:127-38
  • Bulfield G, Siller WG, Wight PA, Moore KJ. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 1984;81:1189-92
  • Sicinski P, Geng Y, Ryder-Cook AS, The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989;244:1578-80
  • Danko I, Chapman V, Wolff JA. The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 1992;32:128-31
  • Cox GA, Phelps SF, Chapman VM, Chamberlain JS. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat Genet 1993;4:87-93
  • Chapman VM, Miller DR, Armstrong D, Caskey CT. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci USA 1989;86:1292-6
  • Deconinck AE, Rafael JA, Skinner JA, Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997;90:717-27
  • Grady RM, Teng H, Nichol MC, Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 1997;90:729-38
  • Megeney LA, Kablar B, Garrett K, MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 1996;10:1173-83
  • Cooper BJ, Winand NJ, Stedman H, The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 1988;334:154-6
  • Valentine BA, Winand NJ, Pradhan D, Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 1992;42:352-6
  • Shimatsu Y, Katagiri K, Furuta T, Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 2003;52:93-7
  • Winand NJ, Edwards M, Pradhan D, Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscul Disord 1994;4:433-45
  • Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966;8:295-309
  • Murphy WJ, Durum SK, Anver MR, Induction of T cell differentiation and lymphomagenesis in the thymus of mice with severe combined immune deficiency (SCID). J Immunol 1994;153:1004-14
  • Pantelouris EM. Absence of thymus in a mouse mutant. Nature 1968;217:370-1
  • Colucci F, Soudais C, Rosmaraki E, Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 1999;162:2761-5
  • Goldman JP, Blundell MP, Lopes L, Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998;103:335-42
  • Mazurier F, Fontanellas A, Salesse S, A novel immunodeficient mouse model – RAG2 × common cytokine receptor gamma chain double mutants–requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res 1999;19:533-41
  • Shinkai Y, Rathbun G, Lam KP, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68:855-67
  • Silva-Barbosa SD, Butler-Browne GS, Di Santo JP, Mouly V. Comparative analysis of genetically engineered immunodeficient mouse strains as recipients for human myoblast transplantation. Cell Transplant 2005;14:457-67
  • Kuwajima S, Sato T, Ishida K, Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol 2006;7:740-6
  • Morrison J, Lu QL, Pastoret C, T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 2000;80:881-91
  • Clark EA, Shultz LD, Pollack SB. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 1981;12:601-13
  • Dorshkind K, Pollack SB, Bosma MJ, Phillips RA. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol 1985;134:3798-801
  • Law PK, Goodwin TG, Fang QW, Myoblast transfer therapy for Duchenne muscular dystrophy. Acta Paediatr Jpn 1991;33:206-15
  • Huard J, Roy R, Bouchard JP, Human myoblast transplantation between immunohistocompatible donors and recipients produces immune reactions. Transplant Proc 1992;24:3049-151
  • Law PK, Goodwin TG, Fang Q, Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant 1992;1:235-44
  • Gussoni E, Pavlath GK, Lanctot AM, Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992;356:435-8
  • Karpati G, Ajdukovic D, Arnold D, Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 1993;34:8-17
  • Tremblay JP, Malouin F, Roy R, Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993;2:99-112
  • Tremblay JP, Bouchard JP, Malouin F, Myoblast transplantation between monozygotic twin girl carriers of Duchenne muscular dystrophy. Neuromuscul Disord 1993;3:583-92
  • Morandi L, Bernasconi P, Gebbia M, Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscul Disord 1995;5:291-5
  • Mendell JR, Kissel JT, Amato AA, Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med 1995;333:832-8
  • Miller RG, Sharma KR, Pavlath GK, Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 1997;20:469-78
  • Neumeyer AM, Cros D, McKenna-Yasek D, Pilot study of myoblast transfer in the treatment of Becker muscular dystrophy. Neurology 1998;51:589-92
  • Skuk D, Roy B, Goulet M, Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004;9:475-82
  • Torrente Y, Belicchi M, Marchesi C, Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007;16:563-77
  • Perie S, Mamchaoui K, Mouly V, Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord 2006;16:770-81
  • Vilquin JT, Marolleau JP, Sacconi S, Normal growth and regenerating ability of myoblasts from unaffected muscles of facioscapulohumeral muscular dystrophy patients. Gene Ther 2005;12:1651-62
  • Gavina M, Belicchi M, Rossi B, VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood 2006;108:2857-66
  • Marchesi C, Belicchi M, Meregalli M, Correlation of circulating CD133+ progenitor subclasses with a mild phenotype in Duchenne muscular dystrophy patients. PLoS One 2008;3:e2218
  • Bennett JM, Blume RS, Wolff SM. Characterization and significance of abnormal leukocyte granules in the beige mouse: a possible homologue for Chediak-Higashi Aleutian trait. J Lab Clin Med 1969;73:235-43
  • Lutzner MA, Lowrie CT, Jordan HW. Giant granules in leukocytes of the beige mouse. J Hered 1967;58:299-300
  • MacDougall JR, Croy BA, Chapeau C, Clark DA. Demonstration of a splenic cytotoxic effector cell in mice of genotype SCID/SCID.BG/BG. Cell Immunol 1990;130:106-17
  • Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA 1992;89:3290-4
  • Cooper RN, Thiesson D, Furling D, Extended amplification in vitro and replicative senescence: key factors implicated in the success of human myoblast transplantation. Hum Gene Ther 2003;14:1169-79

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.