708
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Engineering cell platforms for myocardial regeneration

&
Pages 1055-1077 | Published online: 05 May 2011

Bibliography

  • Taylor DA, Zenovich AG. Cardiovascular cell therapy and endogenous repair. Diabetes Obes Metab 2008;10(Suppl 4):5-15
  • Jawad H, Lyon AR, Harding SE, Myocardial tissue engineering. Br Med Bull 2008;87:31-47
  • Wang F, Guan J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev 2010;62:784-97
  • Gerecht-Nir S, Radisic M, Park H, Biophysical regulation during cardiac development and application to tissue engineering. Int J Dev Biol 2006;50:233-43
  • Bolli P, Chaudhry HW. Molecular physiology of cardiac regeneration. Ann NY Acad Sci 2010;1211:113-26
  • Kehat I, Kenyagin-Karsenti D, Snir M, Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407-14
  • Boheler KR, Czyz J, Tweedie D, Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002;91:189-201
  • Behfar A, Perez-Terzic C, Faustino RS, Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 2007;204:405-20
  • Caspi O, Lesman A, Basevitch Y, Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 2007;100:263-72
  • Arbel G, Caspi O, Huber I, Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation. Methods Mol Biol 2010;660:85-95
  • Xi J, Khalil M, Shishechian N, Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J 2010;24:2739-51
  • Blin G, Nury D, Stefanovic S, A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 2010;120:1125-39
  • Mauritz C, Schwanke K, Reppel M, Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008;118:507-17
  • Nakagawa M, Koyanagi M, Tanabe K, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101-6
  • Okita K, Nakagawa M, Hyenjong H, Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-53
  • Nelson TJ, Martinez-Fernandez A, Yamada S, Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 2009;120:408-16
  • Zwi L, Caspi O, Arbel G, Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 2009;120:1513-23
  • Ieda M, Fu JD, Delgado-Olguin P, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142:375-86
  • Makino S, Fukuda K, Miyoshi S, Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705
  • Tomita S, Li RK, Weisel RD, Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247-56
  • Toma C, Pittenger MF, Cahill KS, Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-8
  • Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003;21:105-10
  • Prat-Vidal C, Roura S, Farre J, Umbilical cord blood-derived stem cells spontaneously express cardiomyogenic traits. Transplant Proc 2007;39:2434-7
  • Nakanishi C, Yamagishi M, Yamahara K, Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 2008;374:11-16
  • Pereira WC, Khushnooma I, Madkaikar M, Ghosh K. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. J Tissue Eng Regen Med 2008;2:394-9
  • Labovsky V, Hofer EL, Feldman L, Cardiomyogenic differentiation of human bone marrow mesenchymal cells: role of cardiac extract from neonatal rat cardiomyocytes. Differentiation 2009;79:93-101
  • He XQ, Chen MS, Li SH, Co-culture with cardiomyocytes enhanced the myogenic conversion of mesenchymal stromal cells in a dose-dependent manner. Mol Cell Biochem 2010;339:89-98
  • Beltrami AP, Barlucchi L, Torella D, Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763-76
  • Davis DR, Kizana E, Terrovitis J, Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol 2010;49:312-21
  • Davis DR, Zhang Y, Smith RR, Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 2009;4:e7195
  • Messina E, De Angelis L, Frati G, Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95:911-21
  • Smith RR, Barile L, Cho HC, Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115:896-908
  • Jawad H, Ali NN, Lyon AR, Myocardial tissue engineering: a review. J Tissue Eng Regen Med 2007;1:327-42
  • Grayson WL, Martens TP, Eng GM, Biomimetic approach to tissue engineering. Semin Cell Dev Biol 2009;20:665-73
  • Radisic M, Park H, Gerecht S, Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci 2007;362:1357-68
  • Bonaros N, Rauf R, Schachner T, Enhanced cell therapy for ischemic heart disease. Transplantation 2008;86:1151-60
  • Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 2005;39:363-76
  • Hodgson DM, Behfar A, Zingman LV, Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 2004;287:H471-9
  • Kehat I, Khimovich L, Caspi O, Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282-9
  • Kofidis T, de Bruin JL, Hoyt G, Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 2005;24:737-44
  • Laflamme MA, Chen KY, Naumova AV, Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-24
  • Leor J, Gerecht S, Cohen S, Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 2007;93:1278-84
  • Nussbaum J, Minami E, Laflamme MA, Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 2007;21:1345-57
  • van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 2008;102:1008-10
  • Lesman A, Habib M, Caspi O, Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 2009;16:115-25
  • Lu WN, Lu SH, Wang HB, Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 2009;15:1437-47
  • Shapira-Schweitzer K, Habib M, Gepstein L, Seliktar D. A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. J Mol Cell Cardiol 2009;46:213-24
  • Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A 2009;15:1211-22
  • Chen QZ, Ishii H, Thouas GA, An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 2010;31:3885-93
  • Christoforou N, Oskouei BN, Esteso P, Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS ONE 2010;5:e11536
  • Lin Q, Fu Q, Zhang Y, Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 2010;12:1179-85
  • Arminan A, Gandia C, Garcia-Verdugo JM, Cardiac transcription factors driven lineage-specification of adult stem cells. J Cardiovasc Transl Res 2010;3:61-5
  • Covas DT, Siufi JL, Silva AR, Orellana MD. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 2003;36:1179-83
  • Hare JM, Traverse JH, Henry TD, A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-86
  • Huang XP, Sun Z, Miyagi Y, Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010;122:2419-29
  • Jiang W, Ma A, Wang T, Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transpl Int 2006;19:570-80
  • Martin-Rendon E, Sweeney D, Lu F, 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 2008;95:137-48
  • Mastitskaya S, Denecke B. Human spongiosa mesenchymal stem cells fail to generate cardiomyocytes in vitro. J Negat Results Biomed 2009;8:11
  • Molina EJ, Palma J, Gupta D, Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy. J Thorac Cardiovasc Surg 2008;135:292-9. 299.e291
  • Nagaya N, Fujii T, Iwase T, Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287:H2670-6
  • Poncelet AJ, Hiel AL, Vercruysse J, Intracardiac allogeneic mesenchymal stem cell transplantation elicits neo-angiogenesis in a fully immunocompetent ischaemic swine model. Eur J Cardiothorac Surg 2010;38:781-7
  • Quevedo HC, Hatzistergos KE, Oskouei BN, Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 2009;106:14022-7
  • Schuleri KH, Feigenbaum GS, Centola M, Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009;30:2722-32
  • Henning RJ, Burgos JD, Vasko M, Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant 2007;16:907-17
  • Orlic D, Kajstura J, Chimenti S, Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-5
  • Singelyn JM, Christman KL. Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 2010;3:478-86
  • Wang H, Zhou J, Liu Z, Wang C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 2010;14:1044-55
  • Piepoli MF, Capucci A. Cardiac regeneration by progenitor cells: what is it known as and what is it still to be known as? Cardiovasc Hematol Agents Med Chem 2009;7:127-36
  • Satin J, Kehat I, Caspi O, Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 2004;559:479-96
  • Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty. Account Res 2009;16:175-98
  • Fernandes S, Naumova AV, Zhu WZ, Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J Mol Cell Cardiol 2010;49:941-9
  • Mayor S. First patient enters trial to test safety of stem cells in spinal injury. BMJ 2010;341:c5724
  • Zwi L, Mizrahi I, Arbel G, Scalable production of cardiomyocytes derived from induced pluripotent stem (iPS) cells without c-Myc. Tissue Eng Part A 2011;17:1027-37
  • Banito A, Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep 2010;11:353-9
  • Arminan A, Gandia C, Bartual M, Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 2009;18:907-18
  • Beltrami AP, Urbanek K, Kajstura J, Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-7
  • Bergmann O, Bhardwaj RD, Bernard S, Evidence for cardiomyocyte renewal in humans. Science 2009;324:98-102
  • Oh H, Bradfute SB, Gallardo TD, Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100:12313-18
  • Andersen DC, Andersen P, Schneider M, Murine "cardiospheres" are not a source of stem cells with cardiomyogenic potential. Stem Cells 2009;27:1571-81
  • Cedars-Sinai Medical Center; CArdiosphere-Derived aUtologous Stem CElls to Reverse ventricUlar dySfunction (CADUCEUS). ClinicalTrials.gov NCT00893360. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00893360
  • Martens TP, Godier AF, Parks JJ, Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 2009;18:297-304
  • Graham HK, Horn M, Trafford AW. Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxf) 2008;194:3-21
  • Kofidis T, de Bruin JL, Hoyt G, Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg 2004;128:571-8
  • Kofidis T, Lebl DR, Martinez EC, Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 2005;112:I173-7
  • Zhang P, Zhang H, Wang H, Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 2006;30:86-93
  • Singelyn JM, DeQuach JA, Seif-Naraghi SB, Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 2009;30:5409-16
  • Zhao ZQ, Puskas JD, Xu D, Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of C-kit cells, myofibroblasts, and macrophages after myocardial infarction. J Am Coll Cardiol 2010;55:1250-61
  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem 2009;78:929-58
  • Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 2005;46:714-19
  • Huang NF, Yu J, Sievers R, Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng 2005;11:1860-6
  • Suuronen EJ, Veinot JP, Wong S, Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation 2006;114:I138-44
  • Kutschka I, Chen IY, Kofidis T, Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 2006;114:I167-73
  • Kutschka I, Chen IY, Kofidis T, In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant 2007;26:273-80
  • Zhang Y, Thorn S, DaSilva JN, Collagen-based matrices improve the delivery of transplanted circulating progenitor cells: development and demonstration by ex vivo radionuclide cell labeling and in vivo tracking with positron-emission tomography. Circ Cardiovasc Imaging 2008;1:197-204
  • Takehara N, Tsutsumi Y, Tateishi K, Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 2008;52:1858-65
  • Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 2005;105:151-63
  • Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008;14:199-215
  • Chekanov V, Akhtar M, Tchekanov G, Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin Electrophysiol 2003;26:496-9
  • Christman KL, Fok HH, Sievers RE, Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 2004;10:403-9
  • Ryu JH, Kim IK, Cho SW, Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 2005;26:319-26
  • Smith JD, Chen A, Ernst LA, Immobilization of aprotinin to fibrinogen as a novel method for controlling degradation of fibrin gels. Bioconjug Chem 2007;18:695-701
  • Atar D, Huber K, Rupprecht HJ, Rationale and design of the ‘F.I.R.E.’ study. A multicenter, double-blind, randomized, placebo-controlled study to measure the effect of FX06 (a fibrin-derived peptide Bbeta15–42 on ischemia-reperfusion injury in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Cardiology 2007;108:117-23
  • Shachar M, Cohen S. Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail Rev 2003;8:271-6
  • Landa N, Miller L, Feinberg MS, Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008;117:1388-96
  • Tsur-Gang O, Ruvinov E, Landa N, The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 2009;30:189-95
  • Yu J, Christman KL, Chin E, Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2009;137:180-7
  • Leor J, Tuvia S, Guetta V, Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 2009;54:1014-23
  • Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 2011;32:565-78
  • Ikaria Holdings, Inc. IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction (PRESERVATION I). ClinicalTrials.gov NCT01226563. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01226563
  • Kim IY, Seo SJ, Moon HS, Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26:1-21
  • Cho YI, Park S, Jeong SY, Yoo HS. In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates. Eur J Pharm Biopharm 2009;73:59-65
  • Hu X, Gao C. Photoinitiating polymerization to prepare biocompatible chitosan hydrogels. J Appl Polym Sci 2008;110:1059-67
  • Lu S, Wang H, Lu W, Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng Part A 2010;16:1303-15
  • Chupa JM, Foster AM, Sumner SR, Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 2000;21:2315-22
  • Davis ME, Motion JP, Narmoneva DA, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005;111:442-50
  • Yoon SJ, Fang YH, Lim CH, Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 2009;91:163-71
  • Wu DQ, Qiu F, Wang T, Toward the development of partially biodegradable and injectable thermoresponsive hydrogels for potential biomedical applications. ACS Appl Mater Interfaces 2009;1:319-27
  • Ohya S, Nakayama Y, Matsuda T. Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2001;2:856-63
  • Li F, Carlsson D, Lohmann C, Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Natl Acad Sci USA 2003;100:15346-51
  • Ohya S, Matsuda T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J Biomater Sci Polym Ed 2005;16:809-27
  • Wang T, Wu DQ, Jiang XJ, Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail 2009;11:14-19
  • Kim S, Chung EH, Gilbert M, Healy KE. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 2005;75:73-88
  • Lee BH, Vernon B. In situ-gelling, erodible N-isopropylacrylamide copolymers. Macromol Biosci 2005;5:629-35
  • Lee BH, Vernon B. Copolymers of N isopropylacrylamide, HEMA lactate and acrylic acid with time dependent lower critical solution temperature as a bioresorbable carrier. Polym Int 2005;54:418-22
  • Li XY, Wang T, Jiang XJ, Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 2010;115:194-9
  • Fujimoto KL, Ma Z, Nelson DM, Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 2009;30:4357-68
  • Wang F, Li Z, Khan M, Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 2010;6:1978-91
  • Dobner S, Bezuidenhout D, Govender P, A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Card Fail 2009;15:629-36
  • Zhang G, Hu Q, Braunlin EA, Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 2008;14:1025-36
  • Jiang XJ, Wang T, Li XY, Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction. J Biomed Mater Res A 2009;90:472-7
  • Hamdi H, Furuta A, Bellamy V, Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 2009;87:1196-203
  • Shimizu T, Yamato M, Isoi Y, Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002;90:e40-8
  • Miyahara Y, Nagaya N, Kataoka M, Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006;12:459-65
  • Christman KL. Lee, RJ: Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 2006;48:907-13
  • Sekine H, Shimizu T, Hobo K, Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 2008;118:S145-52
  • Stevens KR, Kreutziger KL, Dupras SK, Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA 2009;106:16568-73
  • Giraud MN, Armbruster C, Carrel T, Tevaearai HT. Current state of the art in myocardial tissue engineering. Tissue Eng 2007;13:1825-36
  • Ozawa T, Mickle DA, Weisel RD, Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002;106:I176-82
  • Jin J, Jeong SI, Shin YM, Transplantation of mesenchymal stem cells within a poly(lactide-co-ϵ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 2009;11:147-53
  • McDevitt TC, Woodhouse KA. Hauschka, SD et al. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003;66:586-95
  • Siepe M, Giraud MN, Pavlovic M, Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 2006;132:124-31
  • Giraud MN, Flueckiger R, Cook S, Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts. Artif Organs 2010;34:E184-92
  • Pego AP, Van Luyn MJ, Brouwer LA, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with d,l-lactide or ϵ-caprolactone: Degradation and tissue response. J Biomed Mater Res A 2003;67:1044-54
  • Iyer RK, Chiu LL, Radisic M. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. J Biomed Mater Res A 2009;89:616-31
  • Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20:602-6
  • Kochupura PV, Azeloglu EU, Kelly DJ, Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation 2005;112:I144-9
  • Robinson KA, Li J, Mathison M, Extracellular matrix scaffold for cardiac repair. Circulation 2005;112:I135-43
  • Kelly DJ, Rosen AB, Schuldt AJ, Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng Part A 2009;15:2189-201
  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-83
  • Ott HC, Matthiesen TS, Goh SK, Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008;14:213-21
  • McCurdy S, Baicu CF, Heymans S, Bradshaw AD. Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J Mol Cell Cardiol 2010;48:544-9
  • Badylak S, Obermiller J, Geddes L, Matheny R. Extracellular matrix for myocardial repair. Heart Surg Forum 2003;6:E20-6
  • Eitan Y, Sarig U, Dahan N, Machluf M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 2009;16:671-83
  • Wainwright JM, Czajka CA, Patel UB, Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 2010;16:525-32
  • Wang B, Borazjani A, Tahai M, Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 2010;94:1100-10
  • Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002;23:2447-57
  • Chen CH, Wei HJ, Lin WW, Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc Res 2008;80:88-95
  • Wei HJ, Chen CH, Lee WY, Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 2008;29:3547-56
  • Eschenhagen T, Fink C, Remmers U, Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 1997;11:683-94
  • Kofidis T, Akhyari P, Boublik J, In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 2002;124:63-9
  • Zimmermann WH, Fink C, Kralisch D, Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000;68:106-14
  • Zimmermann WH, Schneiderbanger K, Schubert P, Tissue engineering of a differentiated cardiac muscle construct. Circ Res 2002;90:223-30
  • Zimmermann WH, Melnychenko I, Wasmeier G, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 2006;12:452-8
  • Yildirim Y, Naito H, Didie M, Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 2007;116:I16-23
  • Callegari A, Bollini S, Iop L, Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials 2007;28:5449-61
  • Pozzobon M, Bollini S, Iop L, Human bone marrow-derived CD133+ cells delivered to a collagen patch on cryoinjured rat heart promote angiogenesis and arteriogenesis. Cell Transplant 2010;19:1247-60
  • Simpson D, Liu H, Fan TH, A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 2007;25:2350-7
  • Giraud MN, Ayuni E, Cook S, Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif Organs 2008;32:692-700
  • Kanwal S, Malik N, Singh J, Re: Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif Organs 2009;33:87- author reply 87 – 88
  • Li RK, Jia ZQ, Weisel RD, Survival and function of bioengineered cardiac grafts. Circulation 1999;100(19 Suppl):II63-9
  • Akhyari P, Fedak PW, Weisel RD, Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 2002;106:I137-42
  • Leor J, Aboulafia-Etzion S, Dar A, Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 2000;102:III56-61
  • Dvir T, Kedem A, Ruvinov E, Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci USA 2009;106:14990-5
  • Amir G, Miller L, Shachar M, Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transplant 2009;18:275-82
  • Krupnick AS, Kreisel D, Engels FH, A novel small animal model of left ventricular tissue engineering. J Heart Lung Transplant 2002;21:233-43
  • Fukuhara S, Tomita S, Nakatani T, Bone marrow cell-seeded biodegradable polymeric scaffold enhances angiogenesis and improves function of the infarcted heart. Circ J 2005;69:850-7
  • Giraud MN, Flueckiger R, Cook S, Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts. Artif Organs 2010;34:E184-92
  • Miyagi Y, Zeng F, Huang XP, Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials 2010;31:7684-94
  • Chachques JC, Trainini JC, Lago N, Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 2008;85:901-8
  • Cortes-Morichetti M, Frati G, Schussler O, Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng 2007;13:2681-7
  • Dvir T, Benishti N, Shachar M, Cohen S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng 2006;12:2843-52
  • Radisic M, Yang L, Boublik J, Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 2004;286:H507-16
  • Shafy A, Lavergne T, Latremouille C, Association of electrostimulation with cell transplantation in ischemic heart disease. J Thorac Cardiovasc Surg 2009;138:994-1001
  • Genovese JA, Spadaccio C, Chachques E, Cardiac pre-differentiation of human mesenchymal stem cells by electrostimulation. Front Biosci 2009;14:2996-3002
  • Radisic M, Park H, Shing H, Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004;101:18129-34
  • Au HTH, Cheng I, Chowdhury MF, Radisic M. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials 2007;28:4277-93
  • Barash Y, Dvir T, Tandeitnik P, Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 2010;16:1417-26
  • Tandon N, Cannizzaro C, Chao PH, Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 2009;4:155-73
  • Serena E, Figallo E, Tandon N, Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 2009;315:3611-19
  • Hu X, Yu SP, Fraser JL, Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 2008;135:799-808
  • Wang JA, He A, Hu X, Anoxic preconditioning: a way to enhance the cardioprotection of mesenchymal stem cells. Int J Cardiol 2009;133:410-12
  • Gepstein L, Ding C, Rehemedula D, In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 2010;28:2151-61
  • Ng KM, Lee YK, Chan YC, Exogenous expression of HIF-1alpha promotes cardiac differentiation of embryonic stem cells. J Mol Cell Cardiol 2010;48:1129-37
  • Bianco C, Cotten C, Lonardo E, Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am J Pathol 2009;175:2146-58
  • Iyer NV, Kotch LE, Agani F, Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 1998;12:149-62
  • Wang JA, Chen TL, Jiang J, Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 2008;29:74-82
  • Wang S, Zhou Y, Seavey CN, Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia. Stem Cell Res 2010;4:117-28
  • Chacko SM, Ahmed S, Selvendiran K, Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 2011;299:C1562-70
  • Khademhosseini A, Eng G, Yeh J, Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 2007;9:149-57
  • Radisic M, Park H, Chen F, Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 2006;12:2077-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.