264
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Radioprotective gene therapy

, &
Pages 1135-1151 | Published online: 02 May 2011

Bibliography

  • Ch'ang HJ, Maj JG, Paris F, ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 2005;11:484-90
  • Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol 2002;30:513-28
  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z. Differential inhibition of radiation-induced apoptosis. Stem Cells 1997;15(Suppl 2):43-7
  • Paris F, Fuks Z, Kang A, Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001;293:293-7
  • Scott SD, Greco O. Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 2004;23:269-76
  • Holthusen H. Erfahrungen uber die Vertraglichkeit von Rontgenstrahlen und deren Nutzanwendung zur Verhutung von Schaden. Strahlenther Onkol 1936;57:30-6
  • Wenz F, Tiefenbacher U, Willeke F, Weber KJ. The search for therapeutic gain in radiation oncology. Onkologie 2001;24(Suppl 5):51-5
  • Bhide SA, Nutting CM. Recent advances in radiotherapy. BMC Med 2010;8:25
  • Verellen D, Ridder MD, Linthout N, Innovations in image-guided radiotherapy. Nat Rev Cancer 2007;7:949-60
  • Page P, Yang LX. Novel chemoradiosensitizers for cancer therapy. Anticancer Res 2010;30:3675-82
  • Weiss JF, Landauer MR. History and development of radiation-protective agents. Int J Radiat Biol 2009;85:539-73
  • Winczura P, Jassem J. Combined treatment with cytoprotective agents and radiotherapy. Cancer Treat Rev 2010;36:268-75
  • Savoye C, Swenberg C, Hugot S, Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 1997;71:193-202
  • Sasse AD, Clark LG, Sasse EC, Clark OA. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 2006;64:784-91
  • Mell LK, Malik R, Komaki R, Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys 2007;68:111-18
  • Finch PW, Rubin JS, Miki T, Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 1989;245:752-5
  • Finch PW, Rubin JS. Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 2006;98:812-24
  • Farrell CL, Bready JV, Rex KL, Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998;58:933-9
  • Bohlius J, Schmidlin K, Brillant C, Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 2009;373:1532-42
  • Lambin P, Ramaekers BL, van Mastrigt GA, Erythropoietin as an adjuvant treatment with (chemo) radiation therapy for head and neck cancer. Cochrane Database Syst Rev 2009:CD006158
  • Ryu JK, Swann S, LeVeque F, The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: a double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901. Int J Radiat Oncol Biol Phys 2007;67:643-50
  • Su YB, Vickers AJ, Zelefsky MJ, Double-blind, placebo-controlled, randomized trial of granulocyte-colony stimulating factor during postoperative radiotherapy for squamous head and neck cancer. Cancer J 2006;12:182-8
  • Jiang J, McDonald PR, Dixon TM, Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector. Radiat Res 2009;172:414-22
  • Thotala DK, Geng L, Dickey AK, A new class of molecular targeted radioprotectors: GSK-3beta inhibitors. Int J Radiat Oncol Biol Phys 2010;76:557-65
  • Epperly MW, Goff JP, Li S, Intraesophageal administration of GS-nitroxide (JP4-039) protects against ionizing irradiation-induced esophagitis. In Vivo 2010;24:811-19
  • Jiang J, Stoyanovsky DA, Belikova NA, A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res 2009;172:706-17
  • Kim K, Pollard JM, Norris AJ, High-throughput screening identifies two classes of antibiotics as radioprotectors: tetracyclines and fluoroquinolones. Clin Cancer Res 2009;15:7238-45
  • Camphausen K, Tofilon PJ. Combining radiation and molecular targeting in cancer therapy. Cancer Biol Ther 2004;3:247-50
  • Gridley DS, Slater JM. Combining gene therapy and radiation against cancer. Curr Gene Ther 2004;4:231-48
  • Flotte TR. Gene therapy: the first two decades and the current state-of-the-art. J Cell Physiol 2007;213:301-5
  • Wells DJ. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol Toxicol 2010;26:21-8
  • Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet 2005;54:3-20
  • Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003;43:413-39
  • Gene Therapy Clinical Trials Worldwide. John Wiley and Sons, Hoboken, NJ; 2007. Available from: http://www.wiley.com/legacy/wileychi/genmed/clinical/ [Last accessed 20 April 2011]
  • Blacklow NR, Hoggan MD, Sereno MS, A seroepidemiologic study of adenovirus-associated virus infection in infants and children. Am J Epidemiol 1971;94:359-66
  • Handa H, Carter BJ. Adeno-associated virus DNA replication complexes in herpes simplex virus or adenovirus-infected cells. J Biol Chem 1979;254:6603-10
  • Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA 1966;55:1467-74
  • Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 1983;45:555-64
  • Hauswirth WW, Berns KI. Origin and termination of adeno-associated virus DNA replication. Virology 1977;78:488-99
  • Berns KI, Kotin RM, Labow MA. Regulation of adeno-associated virus DNA replication. Biochim Biophys Acta 1988;951:425-9
  • Rose JA, Koczot F. Adenovirus-associated virus multiplication. VI. Base compostion of the deoxyribonucleic acid strand species and strand-specific in vivo transcription. J Virol 1971;8:771-7
  • Wistuba A, Weger S, Kern A, Kleinschmidt JA. Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins. J Virol 1995;69:5311-19
  • Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci USA 2010;107:10220-5
  • Gao GP, Alvira MR, Wang L, Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002;99:11854-9
  • Halbert CL, Rutledge EA, Allen JM, Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000;74:1524-32
  • Bantel-Schaal U. Adeno-associated parvoviruses inhibit growth of cells derived from malignant human tumors. IntJCancer 1990;45:190-4
  • Hermonat PL. Adeno-associated virus inhibits human papillomavirus type 16: a viral interaction implicated in cervical cancer. Cancer Res 1994;54:2278-81
  • Walz CM, Anisi TR, Schlehofer JR, Detection of infectious adeno-associated virus particles in human cervical biopsies. Virology 1998;247:97-105
  • Batshaw ML, Wilson JM, Raper S, Recombinant adenovirus gene transfer in adults with partial ornithine transcarbamylase deficiency (OTCD). Hum Gene Ther 1999;10:2419-37
  • Dyall J, Szabo P, Berns KI. Adeno-associated virus (AAV) site-specific integration: formation of AAV-AAVS1 junctions in an in vitro system. Proc Natl Acad Sci USA 1999;96:12849-54
  • Philpott NJ, Gomos J, Berns KI, Falck-Pedersen E. A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci USA 2002;99:12381-5
  • Hughes SM, Moussavi-Harami F, Sauter SL, Davidson BL. Viral-mediated gene transfer to mouse primary neural progenitor cells. MolTher 2002;5:16-24
  • Flotte TR, Zeitlin PL, Reynolds TC, Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003;14:1079-88
  • Moss RB, Milla C, Colombo J, Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled Phase 2B trial. Hum Gene Ther 2007;18:726-32
  • Jiang H, Pierce GF, Ozelo MC, Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006;14:452-5
  • Manno CS, Pierce GF, Arruda VR, Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12:342-7
  • Niemeyer GP, Herzog RW, Mount J, Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2009;113:797-806
  • Veldwijk MR, Sellner L, Stiefelhagen M, Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34+ peripheral blood progenitor cells. Cytotherapy 2010;12:107-12
  • Bankiewicz KS, Forsayeth J, Eberling JL, Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006;14:564-70
  • Lewitt PA, Rezai AR, Leehey MA, AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011;10:309-19
  • Muramatsu S, Fujimoto K, Kato S, A Phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol Ther 2010;18:1731-5
  • Acland GM, Aguirre GD, Ray J, Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001;28:92-5
  • Le Meur G, Stieger K, Smith AJ, Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 2007;14:292-303
  • Bainbridge JW, Smith AJ, Barker SS, Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008;358:2231-9
  • Maguire AM, Simonelli F, Pierce EA, Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240-8
  • Cideciyan AV, Hauswirth WW, Aleman TS, Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 2009;20:999-1004
  • Simonelli F, Maguire AM, Testa F, Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010;18:643-50
  • Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression. Biotechniques 1989;7:980-2, 984-986, 989-990
  • Schambach A, Baum C. Clinical application of lentiviral vectors - concepts and practice. Curr Gene Ther 2008;8:474-82
  • Fouchier RA, Malim MH. Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv Virus Res 1999;52:275-99
  • Maier P, von Kalle C, Laufs S. Retroviral vectors for gene therapy. Future Microbiol 2010;5:1507-23
  • Aiuti A, Roncarolo MG. Ten years of gene therapy for primary immune deficiencies. Hematology Am Soc Hematol Educ Program 2009:682-9
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818-23
  • Sokolic R, Kesserwan C, Candotti F. Recent advances in gene therapy for severe congenital immunodeficiency diseases. Curr Opin Hematol 2008;15:375-80
  • Kohn DB, Candotti F. Gene therapy fulfilling its promise. N Engl J Med 2009;360:518-21
  • Qasim W, Gaspar HB, Thrasher AJ. Progress and prospects: gene therapy for inherited immunodeficiencies. Gene Ther 2009;16:1285-91
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42
  • Howe SJ, Mansour MR, Schwarzwaelder K, Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143-50
  • Fruehauf S, Klaus J, Huesing J, Efficient mobilization of peripheral blood stem cells following CAD chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 2007;39:743-50
  • Fruehauf S, Ehninger G, Hubel K, Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin's lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant 2010;45:269-75
  • Fruehauf S, Haas R, Zeller WJ, Hunstein W. CD34 selection for purging in multiple myeloma and analysis of CD34+ B cell precursors. Stem Cells 1994;12:95-102
  • Civin CI, Strauss LC, Brovall C, Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133:157-65
  • Sorrentino BP. Gene therapy to protect haematopoietic cells from cytotoxic cancer drugs. Nat Rev Cancer 2002;2:431-41
  • Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 2006;580:998-1009
  • Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991;66:85-94
  • van Tellingen O. The importance of drug-transporting P-glycoproteins in toxicology. Toxicol Lett 2001;120:31-41
  • Fruehauf S, Breems DA, Knaan-Shanzer S, Frequency analysis of multidrug resistance-1 gene transfer into human primitive hematopoietic progenitor cells using the cobblestone area-forming cell assay and detection of vector-mediated P-glycoprotein expression by rhodamine-123. Human Gene Ther 1996;7:1219-31
  • Becker PS, Yu YP, Ceredona AM, Transfer of the multidrug resistance gene, MDR-1, to hematopoietic progenitors from a patient with transformed large cell lymphoma, and demonstration of in vivo chemotherapy protection with dose escalating chemotherapy. Blood 2004;104:5278
  • Takahashi S, Aiba K, Ito Y, Pilot study of MDR1 gene transfer into hematopoietic stem cells and chemoprotection in metastatic breast cancer patients. Cancer Sci 2007;98:1609-16
  • Ruefli AA, Tainton KM, Darcy PK, P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 2002;9:1266-72
  • Tainton KM, Smyth MJ, Jackson JT, Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 2004;11:1028-37
  • Maier P, Fleckenstein K, Li L, Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 2006;166:463-73
  • Maier P, Herskind C, Fleckenstein K, MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 2008;169:301-10
  • Schiedlmeier B, Kuhlcke K, Eckert HG, Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice. Blood 2000;95:1237-48
  • De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005;17:535-47
  • Inoue A, Seidel MG, Wu W, Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002;2:279-88
  • Qiu W, Carson-Walter EB, Liu H, PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2008;2:576-83
  • Wu WS, Heinrichs S, Xu D, Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005;123:641-53
  • Chipuk JE, Bouchier-Hayes L, Kuwana T, PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005;309:1732-5
  • Mustata G, Li M, Zevola N, Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem 2011;11:281-90
  • Maier P, Herskind C, Barzan D, SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 2010;173:612-19
  • Schafer J, Bachtler J, Engling A, Suppression of apoptosis and clonogenic survival in irradiated human lymphoblasts with different TP53 status. Radiat Res 2002;158:699-706
  • Yu Y, Little JB. p53 is involved in but not required for ionizing radiation-induced caspase-3 activation and apoptosis in human lymphoblast cell lines. Cancer Res 1998;58:4277-81
  • Keele BB Jr, McCord JM, Fridovich I. Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 1970;245:6176-81
  • Mann T, Keilin D. Haemocuprein and hepatocuprein, copper-protein compound of blood and liver in mammals. Proc R Soc London Ser B Biol Sci 1939;126:303-15
  • McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244:6049-55
  • Marklund SL, Holme E, Hellner L. Superoxide dismutase in extracellular fluids. Clin Chim Acta 1982;126:41-51
  • Akashi M, Hachiya M, Paquette RL, Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J Biol Chem 1995;270:15864-9
  • Hardmeier R, Hoeger H, Fang-Kircher S, Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc Natl Acad Sci USA 1997;94:7572-6
  • Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27-33
  • Vozenin-Brotons MC, Sivan V, Gault N, Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med 2001;30:30-42
  • Epperly MW, Sikora CA, DeFilippi SJ, Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 2002;157:568-77
  • Noshita N, Sugawara T, Fujimura M, Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2001;21:557-67
  • Drane P, Bravard A, Bouvard V, May E. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 2001;20:430-9
  • Epperly MW, Bray JA, Krager S, Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 1999;43:169-81
  • Sun J, Chen Y, Li M, Ge Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 1998;24:586-93
  • Delanian S, Martin M, Bravard A, Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother Oncol 2001;58:325-31
  • Veldwijk MR, Herskind C, Sellner L, Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol 2009;185:517-23
  • Epperly MW, Defilippi S, Sikora C, Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 2000;7:1011-18
  • Stickle RL, Epperly MW, Klein E, Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase transgene. Radiat Oncol Investig 1999;7:204-17
  • Epperly MW, Tyurina YY, Nie S, MnSOD-plasmid liposome gene therapy decreases ionizing irradiation-induced lipid peroxidation of the esophagus. In Vivo 2005;19:997-1004
  • Epperly MW, Kagan VE, Sikora CA, Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated radiation. Int J Cancer 2001;96:221-31
  • Epperly MW, Sikora C, Defilippi S, Plasmid/liposome transfer of the human manganese superoxide dismutase transgene prevents ionizing irradiation-induced apoptosis in human esophagus organ explant culture. Int J Cancer 2000;90:128-37
  • Kanai AJ, Zeidel ML, Lavelle JP, Manganese superoxide dismutase gene therapy protects against irradiation-induced cystitis. Am J Physiol Renal Physiol 2002;283:F1304-12
  • Guo H, Seixas-Silva JA Jr, Epperly MW, Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene. Radiat Res 2003;159:361-70
  • Epperly MW, Epperly LD, Niu Y, Overexpression of the MnSOD transgene product protects cryopreserved bone marrow hematopoietic progenitor cells from ionizing radiation. Radiat Res 2007;168:560-6
  • Veldwijk MR, Herskind C, Laufs S, Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiother Oncol 2004;72:341-50
  • Zhong W, Oberley LW, Oberley TD, Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 1996;7:1175-86
  • Borrelli A, Schiattarella A, Mancini R, A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells. Free Radic Biol Med 2009;46:110-16
  • Aykin-Burns N, Ahmad IM, Zhu Y, Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009;418:29-37
  • Duan H, Zhang HJ, Yang JQ, MnSOD up-regulates maspin tumor suppressor gene expression in human breast and prostate cancer cells. Antioxid Redox Signal 2003;5:677-88
  • Amstad PA, Liu H, Ichimiya M, Manganese superoxide dismutase expression inhibits soft agar growth in JB6 clone41 mouse epidermal cells. Carcinogenesis 1997;18:479-84
  • Urano M, Kuroda M, Reynolds R, Expression of manganese superoxide dismutase reduces tumor control radiation dose: gene-radiotherapy. Cancer Res 1995;55:2490-3
  • Fleckenstein K, Gauter-Fleckenstein B, Jackson IL, Using biological markers to predict risk of radiation injury. Semin Radiat Oncol 2007;17:89-98
  • Yasui K, Kobayashi N, Yamazaki T, Superoxide dismutase (SOD) as a potential inhibitory mediator of inflammation via neutrophil apoptosis. Free Radic Res 2005;39:755-62
  • Ge NN, Brodie SA, Tinling SP, Brodie HA. The effects of superoxide dismutase in gerbils with bacterial meningitis. Otolaryngol Head Neck Surg 2004;131:563-72
  • Rubin P, Johnston CJ, Williams JP, A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33:99-109
  • Rabbani ZN, Anscher MS, Folz RJ, Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer 2005;5:59
  • Tarhini AA, Belani CP, Luketich JD, A Phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase (MnSOD) plasmid liposome (PL) protection in patients with locally advanced stage III non-small cell lung cancer. Human Gene Ther 2011;22:336-42
  • Kumar S, Gao L, Yeagy B, Reid T. Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 2008;10:371-9
  • Weichselbaum RR, Kufe D. Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther 2009;16:609-19
  • Potten CS. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 1990;58:925-73
  • Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005;16:1241-6
  • Woods NB, Muessig A, Schmidt M, Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003;101:1284-9
  • Hawley RG. Progress toward vector design for hematopoietic stem cell gene therapy. Curr Gene Ther 2001;1:1-17
  • Ramezani A, Hawley TS, Hawley RG. Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003;101:4717-24
  • Almarza E, Zhang F, Santilli G, Correction of SCID-X1 using an enhancerless vav promoter. Hum Gene Ther 2011;22:263-70
  • Zhang F, Thornhill SI, Howe SJ, Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 2007;110:1448-57
  • Marignol L, Coffey M, Hollywood D, Lawler M. Radiation to control transgene expression in tumors. Cancer Biol Ther 2007;6:1005-12
  • Muller OJ, Kaul F, Weitzman MD, Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003;21:1040-6
  • Sellner L, Stiefelhagen M, Kleinschmidt JA, Generation of efficient human blood progenitor-targeted recombinant adeno-associated viral vectors (AAV) by applying an AAV random peptide library on primary human hematopoietic progenitor cells. Exp Hematol 2008;36:957-64
  • Funke S, Maisner A, Muhlebach MD, Targeted cell entry of lentiviral vectors. Mol Ther 2008;16:1427-36
  • Veldwijk MR, Sellner L, Stiefelhagen M, Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34+ peripheral blood progenitor cells. Cytotherapy 2010;12:107-112
  • Segura MM, Garnier A, Durocher Y, New protocol for lentiviral vector mass production. Methods Mol Biol 2010;614:39-52
  • Schweizer M, Merten OW. Large-scale production means for the manufacturing of lentiviral vectors. Curr Gene Ther 2010;10:474-86
  • Cecchini S, Negrete A, Kotin RM. Toward exascale production of recombinant adeno-associated virus for gene transfer applications. Gene Ther 2008;15:823-30
  • Raper SE, Chirmule N, Lee FS, Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148-58
  • Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet 2000;1:91-9
  • Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 1994;5:793-801
  • Zolotukhin S, Potter M, Hauswirth WW, A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 1996;70:4646-54
  • Haupt S, Alsheich-Bartok O, Haupt Y. Clues from worms: a Slug at Puma promotes the survival of blood progenitors. Cell Death Differ 2006;13:913-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.