1,834
Views
11
CrossRef citations to date
0
Altmetric
Review

Individualized conditioning regimes in cord blood transplantation: Towards improved and predictable safety and efficacy

&
Pages 801-813 | Received 18 Jan 2016, Accepted 08 Mar 2016, Published online: 28 Mar 2016

References

  • Gluckman E, Broxmeyer HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–1178.
  • Eapen M, Rubinstein P, Zhang M-J, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet. 2007;369:1947–1954. doi:10.1016/S0140-6736(07)60915-5.
  • Willemze R, Rodrigues CA, Labopin M, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23:492–500. doi:10.1038/leu.2008.365.
  • Brunstein CG, Gutman JA, Weisdorf DJ, et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood. 2010;116:4693–4699. doi:10.1182/blood-2010-05-285304.
  • Ponce DM, Zheng J, Gonzales AM, et al. Reduced late mortality risk contributes to similar survival after double-unit cord blood transplantation compared with related and unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:1316–1326. doi:10.1016/j.bbmt.2011.01.011.
  • Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–288. doi:10.1182/blood-2011-02-334870.
  • Heemskerk MBA, Van Walraven SM, Cornelissen JJ, et al. How to improve the search for an unrelated haematopoietic stem cell donor. Faster is better than more! Bone Marrow Transplant. 2005;35:645–652. doi:10.1038/sj.bmt.1704865.
  • Bartelink IH, Belitser SV, Knibbe CAJ, et al. Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant. 2013;19:305–313. doi:10.1016/j.bbmt.2012.10.010.
  • Admiraal R, Van Kesteren C, Jol-van Der Zijde CM, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haematopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015;2:e194–203. doi:10.1016/S2352-3026(15)00045-9.
  • Jacobson CA, Turki A, McDonough S, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:565–574. doi:10.1016/j.bbmt.2012.02.002.
  • Kanda J, Chiou L-W, Szabolcs P, et al. Immune recovery in adult patients after myeloablative dual umbilical cord blood, matched sibling, and matched unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2012;18:1664–76 e1. doi:10.1016/j.bbmt.2012.06.005.
  • Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–2275. doi:10.1056/NEJMcp041956.
  • Hiwarkar P, Qasim W, Ricciardelli I, et al. Cord blood T cells mediate enhanced anti-tumor effects compared with adult peripheral blood T cells. Blood. 2015;126:2882–2891. doi:10.1182/blood-2015-06-654780.
  • Eapen M, Rocha V, Sanz G, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: A retrospective analysis. Lancet Oncol. 2010;11:653–660. doi:10.1016/S1470-2045(10)70127-3.
  • Boelens JJ, Aldenhoven M, Purtill D, et al. Outcomes of transplantation using a various cell source in children with hurlers syndrome after Myelo-Ablative conditioning. An Eurocord-EBMT-CIBMTR collaborative study. Blood. 2013;121:3981–3987. doi:10.1182/blood-2012-09-455238.
  • Pai S-Y, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–446. doi:10.1056/NEJMoa1410490.
  • Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97:2962–2972.
  • Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol. 2014;5:68. doi:10.3389/fimmu.2014.00068.
  • Milano F, Boelens JJ. Stem cell comparison : what can we learn clinically from unrelated cord blood transplantation as an alternative stem cell source ? Cytotherapy. 2015;17:695–701. doi:10.1016/j.jcyt.2015.03.003.
  • Eapen M, Klein JP, Sanz GF, et al. Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: A retrospective analysis. Lancet Oncol. 2011;12:1214–1221. doi:10.1016/S1470-2045(11)70150-4.
  • Rocha V, Spellman S, Zhang MJ, et al. Effect of HLA-matching recipients to donor noninherited maternal antigens on outcomes after mismatched umbilical cord blood transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2012;18:1890–1896. doi:10.1016/j.bbmt.2012.02.002.
  • Thus KA, De Hoop TA, De Weger RA, et al. Predicted indirectly ReCognizable HLA epitopes Class I promote antileukemia responses after cord blood transplantation: indications for a potential novel donor selection tool. Biol Blood Marrow Transplant. 2016;22:170–173. doi:10.1016/j.bbmt.2015.08.014.
  • Wagner JE, Eapen M, Carter S, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med. 2014;371:1685–1694. doi:10.1056/NEJMoa1410490.
  • Brunstein CG, Eapen M, Ahn KW, et al. Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood. 2012;119:5591–5598. doi:10.1182/blood-2011-10-388512.
  • Scaradavou A, Brunstein CG, Eapen M, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121:752–758. doi:10.1182/blood-2012-08-449108.
  • Verneris MR, Brunstein CG, Barker J, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood. 2009;114:4293–4299. doi:10.1182/blood-2009-04-215525.
  • Martín-Donaire T, Rico M, Bautista G, et al. Immune reconstitution after cord blood transplants supported by coinfusion of mobilized hematopoietic stem cells from a third party donor. Bone Marrow Transplant. 2009;44:213–225. doi:10.1038/bmt.2009.15.
  • Bautista G, Cabrera JR, Regidor C, et al. Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor. Bone Marrow Transplant. 2009;43:365–373. doi:10.1038/bmt.2008.329.
  • Liu H, Rich ES, Godley L, et al. Reduced-intensity conditioning with combined haploidentical and cord blood transplantation results in rapid engraftment, low GVHD, and durable remissions. Blood. 2011;118:6438–6445. doi:10.1182/blood-2011-02-334870.
  • Lindemans CA, Te Boome LCJ, Admiraal R, et al. Sufficient immunosuppression with thymoglobulin is essential for a successful haplo-myeloid bridge in haploidentical-cord blood transplantation. Biol Blood Marrow Transplant. 2015;21(10):1839–1845
  • Lund TC, Boitano AE, Delaney CS, et al. Advances in umbilical cord blood manipulation—from niche to bedside. Nat Rev Clin Oncol. 2014;12:163–174. doi:10.1038/nrclinonc.2014.215.
  • Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 2015;43:498–513. doi:10.1016/j.exphem.2015.04.011.
  • Delaney C, Heimfeld S, Brashem-Stein C, et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16:232–236. doi:10.1038/nm1110-1167.
  • Wagner JE, Brunstein CG, Boitano AE, et al. Phase I/II trial of Stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 2016;18:1–12. doi:10.1016/j.stem.2015.10.004.
  • Horwitz ME, Chao NJ, Rizzieri DA, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124:3121–3128. doi:10.1172/JCI74556.
  • Hiwarkar P, Gaspar HB, Gilmour K, et al. Impact of viral reactivations in the era of pre-emptive antiviral drug therapy following allogeneic haematopoietic SCT in paediatric recipients. Bone Marrow Transplant. 2013;48:803–808. doi:10.1038/bmt.2012.221.
  • Lindemans CA, Chiesa R, Amrolia PJ, et al. Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood. 2014;123:126–132. doi:10.1182/blood-2013-05-502385.
  • Admiraal R, De Koning C, Bierings M, et al. Early CD4 T cell reconstitution prevents viral reactivation and improves outcome after pediatric hematopoietic cell transplantation. In: ASBMT-CIBMTR Tandem Meeting., 2016.
  • Parkman R, Cohen G, Carter SL, et al. Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant. 2006;12:919–927. doi:10.1016/j.bbmt.2006.05.008.
  • Ishaqi MK, Afzal S, Dupuis A, et al. Early lymphocyte recovery post-allogeneic hematopoietic stem cell transplantation is associated with significant graft-versus-leukemia effect without increase in graft-versus-host disease in pediatric acute lymphoblastic leukemia. Bone Marrow Transplant. 2008;41:245–252. doi:10.1038/sj.bmt.1705891.
  • Admiraal R, Chiesa R, Bierings M, et al. Early CD4+ immune reconstitution predicts probability of relapse in pediatric AML after unrelated cord blood transplantation: importance of preventing in vivo T-cell depletion using Thymoglobulin®. Biol Blood Marrow Transplant. 2015;21:S206. doi:10.1016/j.bbmt.2015.06.012.
  • Willemsen L, Jol-Van Der Zijde CM, Admiraal R, et al. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: thymoglobulin versus alemtuzumab. Biol Blood Marrow Transplant. 2015;21:473–482. doi:10.1016/j.bbmt.2015.06.012.
  • Oshrine BR, Li Y, Teachey DT, et al. Immunologic recovery in children after alternative donor allogeneic transplantation for hematologic malignancies: comparison of recipients of partially T cell-depleted peripheral blood stem cells and umbilical cord blood. Biol Blood Marrow Transpl. 2013;19:1581–1589. doi:10.1016/j.bbmt.2013.08.003.
  • Szabolcs P, Niedzwiecki D. Immune reconstitution after unrelated cord blood transplantation. Cytotherapy. 2007;9:111–122. doi:10.1080/14653240701231014.
  • Booth C, Veys P. T cell depletion in paediatric stem cell transplantation. Clin Exp Immunol. 2013;172:139–147. doi:10.1111/cei.2013.172.issue-2.
  • Chiesa R, Gilmour K, Qasim W, et al. Omission of in vivo T-cell depletion promotes rapid expansion of naïve CD4+ cord blood lymphocytes and restores adaptive immunity within 2 months after unrelated cord blood transplant. Br J Haematol. 2012;156:656–666. doi:10.1111/j.1365-2141.2011.08994.x.
  • Bosch M, Dhadda M, Hoegh-Petersen M, et al. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy. 2012;14:1258–1275. doi:10.3109/14653249.2012.715243.
  • Williams K, Hakim FT, Gress RE. T-cell immune reconstitution following lymphodepletion. Semin Immunol. 2008;19:318–330. doi:10.1016/j.smim.2007.10.004.
  • Shah GL, Shune L, Purtill D, et al. Robust vaccine responses in adult and pediatric cord blood transplantation recipients treated for hematologic malignancies. Biol Blood Marrow Transplant. 2015;21:2160–2166. doi:10.1016/j.bbmt.2015.06.012.
  • Sanz J, Cano I, Gonzalez-Barbera EM, et al. Blood stream infections in adult patients undergoing cord blood transplantation from unrelated donors after myeloablative conditioning regimen. Biol Blood Marrow Transplant. 2015;21:755–760. doi:10.1016/j.bbmt.2015.06.012.
  • Lazaryan A, Weisdorf DJ, DeFor T, et al. Risk factors for acute and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation with umbilical cord blood and matched related donors. Biol Blood Marrow Transplant. 2015;22:134–140. doi:10.1016/j.bbmt.2015.09.008.
  • Ostronoff F, Milano F, Gooley T, et al. Double umbilical cord blood transplantation in patients with hematologic malignancies using a reduced-intensity preparative regimen without antithymocyte globulin. Bone Marrow Transplant. 2013;48:782–786. doi:10.1038/bmt.2012.243.
  • Bartelink IH, Van Reij EML, Gerhardt CE, et al. Fludarabine and exposure-targeted busulfan compares favorably with Busulfan/Cyclophosphamide-based regimens in pediatric hematopoietic cell transplantation: maintaining efficacy with less toxicity. Biol Blood Marrow Transplant. 2013;20:1–9. doi:10.1016/j.bbmt.2013.11.021.
  • Parikh SH, Mendizabal A, Benjamin CL, et al. A novel reduced-intensity conditioning regimen for unrelated umbilical cord blood transplantation in children with nonmalignant diseases. Biol Blood Marrow Transplant. 2014;20:326–336. doi:10.1016/j.bbmt.2013.11.021.
  • Wall DA, Carter SL, Kernan NA, et al. Busulfan/melphalan/antithymocyte globulin followed by unrelated donor cord blood transplantation for treatment of infant leukemia and leukemia in young children: the cord blood transplantation study (COBLT) experience. Biol Blood Marrow Transplant. 2005;11:637–646. doi:10.1016/j.bbmt.2005.05.003.
  • Martin PL, Carter SL, Kernan NA, et al. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant. 2006;12:184–194. doi:10.1016/j.bbmt.2005.09.016.
  • Cornetta K, Laughlin M, Carter S, et al. Umbilical cord blood transplantation in adults: results of the prospective cord blood transplantation (COBLT). Biol Blood Marrow Transplant. 2005;11:149–160. doi:10.1016/j.bbmt.2004.11.020.
  • Saliba RM, Rezvani K, Leen A, et al. General and virus-specific immune cell reconstitution following double cord blood transplantation. Biol Blood Marrow Transplant. 2015;21:1284–1290. doi:10.1016/j.bbmt.2015.06.012.
  • Kurtzberg J, Prasad VK, Carter SL, et al. Results of the cord blood transplantation study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood. 2008;112:4318–4327. doi:10.1182/blood-2008-03-140830.
  • Sanz J, Wagner JE, Sanz MA, et al. Myeloablative cord blood transplantation in adults with acute leukemia: comparison of two different transplant platforms. Biol Blood Marrow Transplant. 2013;19:1725–1730. doi:10.1016/j.bbmt.2013.09.015.
  • Flinsenberg TWH, Spel L, Jansen M, et al. Cognate CD4 T-cell licensing of dendritic cells heralds anti-cytomegalovirus CD8 T-cell immunity after human allogeneic umbilical cord blood transplantation. J Virol. 2015;89:1058–1069. doi:10.1128/JVI.01850-14.
  • Admiraal R, Van Kesteren C, Boelens JJ, et al. Towards evidence-based dosing regimens in children on the basis of population pharmacokinetic pharmacodynamic modelling. Arch Dis Child. 2014;99:267–272. doi:10.1136/archdischild-2013-303721.
  • McCune J, Bemer M. Pharmacokinetics, pharmacodynamics and pharmacogenomics of immunosuppressants in allogeneic haematopoietic cell transplantation: part I. Clin Pharmacokinet. 2015 Nov 30. [Epub ahead of print]
  • McCune J, Bemer M, Long-Boyle J. Pharmacokinetics, pharmacodynamics, and pharmacogenomics of immunosuppressants in allogeneic hematopoietic cell transplantation: part II. Clin Pharmacokinet. 2015 Nov 13. [Epub ahead of print]
  • Brill MJE, Diepstraten J, Rongen AV, et al. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51:277–304. doi:10.2165/11599410-000000000-00000.
  • Savic RM, Cowan MJ, Dvorak CC, et al. Effect of weight and maturation on busulfan clearance in infants and small children undergoing hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19:1608–1614. doi:10.1016/j.bbmt.2013.08.014.
  • Bartelink IH, Boelens JJ, Bredius RGM, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51:331–345. doi:10.2165/11598180-000000000-00000.
  • Brink MH, Ackaert O, Zwaveling J, et al. Pharmacokinetics of treosulfan in pediatric patients undergoing hematopoietic stem cell transplantation. Ther Drug Monit. 2014;36:465–472. doi:10.1097/FTD.0000000000000047.
  • Knibbe CAJ, Danhof M. Individualized dosing regimens in children based on population PKPD modelling: are we ready for it? Int J Pharm. 2011;415:9–14. doi:10.1016/j.ijpharm.2011.02.056.
  • De Cock RFW, Piana C, Krekels EHJ, et al. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67 Suppl 1:5–16. doi:10.1007/s00228-009-0782-9.
  • Nierkens S, Lankester AC, Egeler RM, et al. Challenges in the harmonization of immune monitoring studies and trial design for cell-based therapies in the context of hematopoietic cell transplantation for pediatric cancer patients. Cytotherapy. 2015;17:1667–1674. doi:10.1016/j.jcyt.2015.09.008.
  • Sheiner L, Beal S. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis–Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1980;8:553–571. doi:10.1007/BF01060053.
  • Willemze AJ, Cremers SC, Schoemaker RC, et al. Ciclosporin kinetics in children after stem cell transplantation. Br J Clin Pharmacol. 2008;66(4):539–545.
  • Wallin JE, Friberg LE, Fasth A, et al. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients : new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Monit. 2009;31:457–466. doi:10.1097/FTD.0b013e3181aab02b.
  • Bartelink IH, Bredius RGM, Belitser SV, et al. Association between busulfan exposure and outcome in children receiving intravenous busulfan before hematologic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15:231–241. doi:10.1016/j.bbmt.2008.11.022.
  • Lalmohamed A, Bartelink I, Van Reij L, et al. Studying the optimal intravenous busulfan exposure in pediatric allogeneic hematopoietic cell transplantation (alloHCT) to improve clinical outcomes: a multicenter study. Biol Blood Marrow Transpl. 2015;21:S102–3. doi:10.1016/j.bbmt.2014.11.124.
  • Pascal L, Tucunduva L, Ruggeri A, et al. Impact of ATG-containing reduced-intensity conditioning after single- or double-unit allogeneic cord blood transplantation. Blood. 2015;126:1027–1033. doi:10.1182/blood-2014-09-599241.
  • Bartelink IH, Van Kesteren C, Boelens JJ, et al. Predictive performance of a busulfan pharmacokinetic model in children and young adults. Ther Drug Monit. 2012;34:574–583. doi:10.1097/FTD.0b013e31826051bb.
  • Long-Boyle J, Savic R, Yan S, et al. Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use. Ther Drug Monit. 2015;37:236–245. doi:10.1097/FTD.0000000000000131.
  • McCune JS, Bemer MJ, Barrett JS, et al. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20:754–763. doi:10.1158/1078-0432.CCR-13-3045.
  • Geddes M, Kangarloo SB, Naveed F, et al. High busulfan exposure is associated with worse outcomes in a daily i.v. busulfan and fludarabine allogeneic transplant regimen. Biol Blood Marrow Transplant. 2008;14:220–228. doi:10.1016/j.bbmt.2008.07.006.
  • Russell JA, Kangarloo SB, Williamson T, et al. Establishing a target exposure for once-daily intravenous busulfan given with fludarabine and thymoglobulin before allogeneic transplantation. Biol Blood Marrow Transplant. 2013;19:1381–1386. doi:10.1016/j.bbmt.2013.07.002.
  • Raj R, Dozeman L, Button A, et al. Myeloablative busulfan with cyclophosphamide (BuCy) versus busulfan with fludarabine (BuFlu) in myeloid neoplasms. J Clin Oncol. 2014;32:7041. doi:10.1200/JCO.2013.54.6911.
  • Lee JH, Joo YD, Kim H, et al. Randomized trial of myeloablative conditioning regimens: busulfan plus cyclophosphamide versus busulfan plus fludarabine. J Clin Oncol. 2013;31:701–709. doi:10.1200/JCO.2013.49.0219.
  • Baron F, Labopin M, Peniket A, et al. Reduced-intensity conditioning with fludarabine and busulfan versus fludarabine and melphalan for patients with acute myeloid leukemia: A report from the acute leukemia working party of the European group for blood and marrow transplantation. Cancer. 2015;121:1048–1055. doi:10.1002/cncr.29530.
  • Rambaldi A, Grassi A, Masciulli A, et al. Busulfan plus cyclophosphamide versus busulfan plus fludarabine as a preparative regimen for allogeneic haemopoietic stem-cell transplantation in patients with acute myeloid leukaemia: an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2015;16:1525–1536. doi:10.1016/S1470-2045(15)00200-4.
  • Ben-Barouch S, Cohen O, Vidal L, et al. Busulfan fludarabine vs busulfan cyclophosphamide as a preparative regimen before allogeneic hematopoietic cell transplantation: systematic review and meta-analysis. Bone Marrow Transpl. 2016;51:232–240. doi:10.1038/bmt.2015.238.
  • Damlaj M, Alkhateeb H, Partain D, et al. Fludarabine busulfan compared to fludarabine melphalan is associated with increased relapse risk in reduced intensity conditioning transplant despite pharmacokinetic dosing. In: ASH., 2015.
  • Admiraal R, Van Kesteren C, Jol-Van Der Zijde CM, et al. Population pharmacokinetic modeling of Thymoglobulin® in children receiving allogeneic-hematopoietic cell transplantation (HCT): towards improved survival through individualized dosing. Clin Pharmacokinet. 2015;54:435–446. doi:10.1007/s40262-014-0214-6.
  • Kakhniashvili I, Filicko J, Kraft WK, et al. Heterogeneous clearance of antithymocyte globulin after CD34+-selected allogeneic hematopoietic progenitor cell transplantation. Biol Blood Marrow Transplant. 2005;11:609–618. doi:10.1016/j.bbmt.2005.05.001.
  • Podgorny PJ, Ugarte-Torres A, Liu Y, et al. High rabbit-antihuman thymocyte globulin levels are associated with low likelihood of graft-vs-host disease and high likelihood of posttransplant lymphoproliferative disorder. Biol Blood Marrow Transplant. 2010;16:915–926. doi:10.1016/j.bbmt.2010.02.027.
  • Remberger M, Persson M, Mattsson J, et al. Effects of different serum-levels of ATG after unrelated donor umbilical cord blood transplantation. Transpl Immunol. 2012;27:59–62. doi:10.1016/j.trim.2012.06.003.
  • Call SK, Kasow KA, Barfield R, et al. Total and active rabbit antithymocyte globulin (rATG;Thymoglobulin) pharmacokinetics in pediatric patients undergoing unrelated donor bone marrow transplantation. Biol Blood Marrow Transplant. 2009;15:274–278. doi:10.1016/j.bbmt.2008.11.027.
  • Admiraal R, Van Kesteren C, Lacna A, et al. Individualized dosing and therapeutic drug monitoring for anti-thymocyte globulin to improve outcome following cord blood transplantation: proof of concept. In: ASBMT-CIBMTR Tandem Meeting., 2016. 10.1016/j.bbmt.2015.11.438
  • Park D-H, Borlongan CV, Willing AE, et al. Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant. 2009;18:985–998.
  • Carroll JE, Mays RW. Update on stem cell therapy for cerebral palsy. Expert Opin Biol Ther. 2011;11:463–471. doi:10.1517/14712598.2011.557060.
  • McCune JS, Mager DE, Bemer MJ, et al. Association of fludarabine pharmacokinetic/dynamic biomarkers with donor chimerism in nonmyeloablative HCT recipients. Cancer Chemother Pharmacol. 2015;76:85–96. doi:10.1007/s00280-015-2768-x.
  • McCune JS, Vicini P, Salinger DH, et al. Population pharmacokinetic/dynamic model of lymphosuppression after fludarabine administration. Cancer Chemother Pharmacol. 2014;75:67–75. doi:10.1007/s00280-014-2618-2.
  • Pfeifer H, Wassmann B, Bethge W, et al. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 2013;27:1254–1262. doi:10.1038/leu.2012.352.
  • Deol A, Lum LG. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treat Rev. 2010;36:528–538. doi:10.1016/j.ctrv.2010.03.004.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–528. doi:10.1016/S0140-6736(14)61403-3.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–1518. doi:10.1056/NEJMoa1215134.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–1517. doi:10.1056/NEJMoa1410490.
  • Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra38–177ra38. doi:10.1126/scitranslmed.3005930.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–733. doi:10.1056/NEJMoa0910383.
  • Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor – positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6056. doi:10.1182/blood-2011-02-334870.
  • Zhou X, Di Stasi A, Tey S-K, et al. Long-term outcome and immune reconstitution after haploidentical stem cell transplant in recipients of allodepleted-T-cells expressing the inducible caspase-9 safety transgene. Blood. 2014;123:blood – 2014–01 – 551671. doi:10.1182/blood-2014-01-551671.
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39:38–48. doi:10.1016/j.immuni.2013.05.019.
  • De Haar C, Plantinga M, Blokland NJ, et al. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology. 2015;4:e1023973. doi:10.1080/2162402X.2015.1008371.
  • Long-Boyle JR, Green KG, Brunstein CG, et al. High fludarabine exposure and relationship with treatment-related mortality after nonmyeloablative hematopoietic cell transplantation. Bone Marrow Transplant. 2011;46:20–26. doi:10.1038/bmt.2010.53.
  • Laínez JM, Orcun S, Pekny JF, et al. Comparison of an assumption-free Bayesian approach with optimal sampling schedule to a maximum a posteriori approach for personalizing cyclophosphamide dosing. Pharmacotherapy. 2014;34:330–335. doi:10.1002/phar.1346.
  • Corbacioglu S, Cesaro S, Faraci M, et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet. 2012;379:1301–1309. doi:10.1016/S0140-6736(11)61938-7.