391
Views
65
CrossRef citations to date
0
Altmetric
Review

Recent advances on biocompatible and biodegradable nanoparticles as gene carriers

, , , , &
Pages 771-785 | Received 10 Jan 2016, Accepted 18 Mar 2016, Published online: 04 Apr 2016

References

  • Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9(24):1647–1652. doi:10.1038/sj.gt.3301923.
  • Mokhtarzadeh A, Parhiz H, Hashemi M, et al. Targeted gene delivery to MCF-7 cells using peptide-conjugated polyethylenimine. AAPS PharmSciTech. 2015;16(5):1025–1032.
  • Verma IM, Somia N. Gene therapy-promises, problems and prospects. Nature. 1997;389(6648):239–242. doi:10.1038/38410.
  • Luten J, van Nostrum CF, De Smedt SC, et al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release. 2008;126(2):97–110. doi:10.1016/j.jconrel.2007.10.028.
  • Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175(4025):949–955.
  • Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol. 2002;13(2):128–131.
  • Ginn SL, Alexander IE, Edelstein ML, et al. Gene therapy clinical trials worldwide to 2012–an update. J Gene Med. 2013;15(2):65–77. doi:10.1002/jgm.2698.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. doi:10.1038/nrg3763.
  • Hashemi M, Parhiz H, Mokhtarzadeh A, et al. Preparation of effective and safe gene carriers by grafting alkyl chains to generation 5 polypropyleneimine. AAPS PharmSciTech. 2015;16(5):1002–1012.
  • Wang W, Li W, Ma N, et al. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46–60.
  • Hashemi M, Ayatollahi S, Parhiz H, et al. PEGylation of polypropylenimine dendrimer with alkylcarboxylate chain linkage to improve DNA delivery and cytotoxicity. Appl Biochem Biotechnol. 2015;177(1):1–17. doi:10.1007/s12010-015-1723-y.
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16. doi:10.1146/annurev-bioeng-071811-150124.
  • Papasani MR, Wang G, Hill RA. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed Nanotechnol Biol Med. 2012;8(6):804–814.
  • Khansarizadeh M, Mokhtarzadeh A, Rashedinia M, et al. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis. Hum Exp Toxicol. 2015;35(4):377–387. doi:10.1177/0960327115591371.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–347.
  • Behnam B, Shier WT, Nia AH, et al. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm. 2013;454(1):204–215. doi:10.1016/j.ijpharm.2013.06.057.
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–212. doi:10.1007/s12274-008-8021-8.
  • Ayatollahi S, Hashemi M, Oskuee RK, et al. Synthesis of efficient gene delivery systems by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Evaluation of transfection efficiency and cytotoxicity in cancerous and mesenchymal stem cells. J Biomater Appl. 2015;30(5):632–648. doi:10.1177/0885328215599667.
  • Ramezani M, Khoshhamdam M, Dehshahri A, et al. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Colloid Surfaces B. 2009;72(1):1–5. doi:10.1016/j.colsurfb.2009.03.018.
  • Chen AA, Derfus AM, Khetani SR, et al. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 2005;33(22):e190–e. doi:10.1093/nar/gni188.
  • Danesh NM, Lavaee P, Ramezani M, et al. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Int J Pharm. 2015;489(1–2):311–317. doi:10.1016/j.ijpharm.2015.04.072.
  • Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11(4):671–681. doi:10.1208/s12248-009-9143-y.
  • Cuenca AG, Jiang H, Hochwald SN, et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107(3):459–466. doi:10.1002/cncr.22035.
  • Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010;15(19–20):842–850. doi:10.1016/j.drudis.2010.08.006.
  • Soltani F, Parhiz H, Mokhtarzadeh A, et al. Synthetic and biological vesicular nano-carriers designed for gene delivery. Curr Pharm Des. 2015. doi:10.2174/1381612821666151027153410.
  • Kohane DS, Langer R. Biocompatibility and drug delivery systems. Chem Sci. 2010;1(4):441–446. doi:10.1039/C0SC00203H.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.
  • Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. doi:10.1186/1477-3155-9-55.
  • Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182–194. doi:10.1016/j.jconrel.2012.12.013.
  • Mokhtarzadeh A, Parhiz H, Hashemi M, et al. P53-Derived peptides conjugation to PEI: an approach to producing versatile and highly efficient targeted gene delivery carriers into cancer cells. Expert Opin Drug Deliv. 2016;13(4):477–491. doi:10.1517/17425247.2016.1126245.
  • Kang ML, Im G-I. Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opin Drug Deliv. 2014;11(2):269–282. doi:10.1517/17425247.2014.867325.
  • Yoshioka Y, Higashisaka K, Tsutsumi Y. Biocompatibility of nanomaterials. In: Lu Z, Sakuma S, editors. Nanomaterials in pharmacology. New York: Springer Science+Business Media; 2016. p. 185–199.
  • McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):264–271. doi:10.1002/wnan.6.
  • Gu J, Fang X, Hao J, et al. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials. 2015;45:99–114. doi:10.1016/j.biomaterials.2014.12.030.
  • Shahidi‐Hamedani N, Shier WT, Moghadam Ariaee F, et al. Targeted gene delivery with noncovalent electrostatic conjugates of sgc-8c aptamer and polyethylenimine. J Gene Med. 2013;15(6–7):261–269. doi:10.1002/jgm.2718.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–1662. doi:10.1016/j.addr.2008.09.001.
  • Raemdonck K, Martens TF, Braeckmans K, et al. Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev. 2013;65(9):1123–1147. doi:10.1016/j.addr.2013.05.002.
  • Uthaman S, Lee SJ. Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. Biomed Res Int. 2015;2015:959175. doi: 10.1155/2015/959175.
  • Cumpstey I. Chemical modification of polysaccharides. ISRN Org Chem. 2013;2013:417672. doi:10.1155/2013/417672.
  • Wang C, Cheng X, Su Y, et al. Accelerated blood clearance phenomenon upon cross-administration of PEGylated nanocarriers in beagle dogs. Int J Nanomedicine. 2015;10:3533–3545. doi:10.2147/IJN.S82481.
  • Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013;3(6):499–503.
  • Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1–8.
  • Tong H, Qin S, Fernandes JC, et al. Progress and prospects of chitosan and its derivatives as non-viral gene vectors in gene therapy. Curr Gene Ther. 2009;9(6):495–502.
  • Köping-Höggård M, Mel’nikova YS, Vårum KM, et al. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med. 2003;5(2):130–141. doi:10.1002/jgm.327.
  • Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–1331.
  • Takeuchi H, Yamamoto H, Niwa T, et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13(6):896–901.
  • Jean M, Alameh M, De Jesus D, et al. Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur J Pharm Sci. 2012;45(1–2):138–149. doi:10.1016/j.ejps.2011.10.029.
  • Ta HT, Dass CR, Larson I, et al. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials. 2009;30(27):4815–4823. doi:10.1016/j.biomaterials.2009.05.035.
  • Chellat F, Tabrizian M, Dumitriu S, et al. In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res. 2000;51(1):107–116.
  • Gazori T, Khoshayand MR, Azizi E, et al. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 2009;77(3):599–606. doi:10.1016/j.carbpol.2009.02.019.
  • Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–1322. doi:10.3390/md8041305.
  • Yang S-J, Chang S-M, Tsai K-C, et al. Effect of chitosan-alginate nanoparticles and ultrasound on the efficiency of gene transfection of human cancer cells. J Gene Med. 2010;12(2):168–179. doi:10.1002/jgm.1418.
  • Green DW, Kim E-J, Jung H-S. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules. J Biomed Mater Res A. 2015;103(9):2855–2863. doi:10.1002/jbm.a.35414.
  • Zhao -Q-Q, Chen J-L, Han M, et al. Combination of poly(ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity. J Biosci Bioeng. 2008;105(1):65–68. doi:10.1263/jbb.105.65.
  • Ho Y-C, Liao Z-X, Panda N, et al. Self-organized nanoparticles prepared by guanidine-and disulfide-modified chitosan as a gene delivery carrier. J Mater Chem. 2011;21(42):16918–16927. doi:10.1039/c1jm11639h.
  • Pure E, Assoian RK. Rheostatic signaling by CD44 and hyaluronan. Cell Signal. 2009;21(5):651–655. doi:10.1016/j.cellsig.2009.01.024.
  • Calabro A, Oken MM, Hascall VC, et al. Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients. Blood. 2002;100(7):2578–2585. doi:10.1182/blood-2002-01-0030.
  • Ascher B, Cerceau M, Baspeyras M, et al. Soft tissue filling with hyaluronic acid. Ann Chir Plast Esthet. 2004;49(5):465–485. doi:10.1016/j.anplas.2004.09.001.
  • Chen J-X, Wang M, Tian -H-H, et al. Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy. Colloids Surf B Biointerfaces. 2015;134:81–87. doi:10.1016/j.colsurfb.2015.06.039.
  • He Y, Cheng G, Xie L, et al. Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials. 2013;34(4):1235–1245. doi:10.1016/j.biomaterials.2012.09.049.
  • Kim E-J, Cho H-J, Park D, et al. Antifibrotic effect of MMP13-encoding plasmid DNA delivered using polyethylenimine shielded with hyaluronic acid. Mol Ther. 2011;19(2):355–361. doi:10.1038/mt.2010.262.
  • Jang YL, Ku SH, Jin S, et al. Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery. J Nanosci Nanotechnol. 2014;14(10):7388–7394.
  • Menzel EJ, Farr C. Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998;131(1):3–11.
  • Aragona P. Chapter 24 - hyaluronan in the treatment of ocular surface disorders. In: Garg HG, Hales CA, editors. Chemistry and biology of hyaluronan. Oxford: Elsevier Science; 2004. p. 529–551.
  • Urbiola K, Sanmartin C, Blanco-Fernandez L, et al. Efficient targeted gene delivery by a novel PAMAM/DNA dendriplex coated with hyaluronic acid. Nanomedicine (Lond). 2014;9(18):2787–2801. doi:10.2217/nnm.14.45.
  • Campo GM, Avenoso A, Campo S, et al. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol. 2010;80(4):480–490. doi:10.1016/j.bcp.2010.04.024.
  • Martens TF, Remaut K, Deschout H, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92. doi:10.1016/j.jconrel.2015.01.030.
  • Ohya Y, Takeda S, Shibata Y, et al. Evaluation of polyanion-coated biodegradable polymeric micelles as drug delivery vehicles. J Control Release. 2011;155(1):104–110. doi:10.1016/j.jconrel.2010.11.008.
  • Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release. 2013;172(1):77–85. doi:10.1016/j.jconrel.2013.07.027.
  • Hosseinkhani H, Aoyama T, Ogawa O, et al. Tumor targeting of gene expression through metal-coordinated conjugation with dextran. J Control Release. 2003;88(2):297–312.
  • Heinze T, Liebert T, Heublein B, et al. Functional polymers based on dextran. In: Klemm D, editor. Polysaccharides II. Advances in polymer science. Vol. 205. New York: Springer Berlin Heidelberg; 2006. p. 199–291.
  • Raemdonck K, Naeye B, Buyens K, et al. Biodegradable dextran nanogels for RNA interference: focusing on endosomal escape and intracellular siRNA delivery. Adv Funct Mater. 2009;19(9):1406–1415. doi:10.1002/adfm.200801795.
  • Chang Kang H, Bae YH. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials. 2011;32(21):4914–4924. doi:10.1016/j.biomaterials.2011.03.042.
  • Zhang Y, Won C-Y, Chu -C-C. Synthesis and characterization of biodegradable hydrophobic–hydrophilic hydrogel networks with a controlled swelling property. J Polymer Sci A: Polymer Chem. 2000;38(13):2392–2404. doi:10.1002/(ISSN)1099-0518.
  • Ochrimenko S, Vollrath A, Tauhardt L, et al. Dextran-graft-linear poly(ethylene imine)s for gene delivery: importance of the linking strategy. Carbohydr Polym. 2014;113:597–606. doi:10.1016/j.carbpol.2014.07.048.
  • Thomas JJ, Rekha MR, Sharma CP. Dextran-protamine polycation: an efficient nonviral and haemocompatible gene delivery system. Colloids Surf B Biointerfaces. 2010;81(1):195–205. doi:10.1016/j.colsurfb.2010.07.015.
  • Jiang G, Min S-H, Oh E, et al. DNA/PEI/Alginate polyplex as an efficientin vivo gene delivery system. Biotechnol Bioprocess Eng. 2007;12(6):684–689. doi:10.1007/BF02931086.
  • Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307–344. doi:10.3390/ma2020307.
  • Santovena A, Alvarez-Lorenzo C, Concheiro A, et al. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films. J Biomater Sci Polym Ed. 2005;16(5):629–641.
  • Avérous L, Pollet E. Biodegradable polymers. In: Avérous L, Pollet E, editors. Environmental silicate nano-biocomposites. green energy and technology. London: Springer; 2012. p. 13–39.
  • Bordes P, Pollet E, Avérous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci. 2009;34(2):125–155. doi:10.1016/j.progpolymsci.2008.10.002.
  • Musyanovych A, Schmitz-Wienke J, Mailander V, et al. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci. 2008;8(2):127–139. doi:10.1002/mabi.200700241.
  • Wan Y, Qu X, Lu J, et al. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials. 2004;25(19):4777–4783. doi:10.1016/j.biomaterials.2003.11.051.
  • Lim Y-B, Choi YH, Park J-S. A self-destroying polycationic polymer: biodegradable poly (4-hydroxy-L-proline ester). J Am Chem Soc. 1999;121(24):5633–5639. doi:10.1021/ja984012k.
  • Lim Y-B, Kim C-H, Kim K, et al. Development of a safe gene delivery system using biodegradable polymer, poly [α-(4-aminobutyl)-L-glycolic acid]. J Am Chem Soc. 2000;122(27):6524–6525. doi:10.1021/ja001033h.
  • Mahoney MJ, Saltzman WM. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci. 1996;85(12):1276–1281. doi:10.1021/js9601602.
  • Reul R, Nguyen J, Kissel T. Amine-modified hyperbranched polyesters as non-toxic, biodegradable gene delivery systems. Biomaterials. 2009;30(29):5815–5824. doi:10.1016/j.biomaterials.2009.06.057.
  • Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101(22):8493–8501. doi:10.1016/j.biortech.2010.05.092.
  • Li Z, Huang L. Sustained delivery and expression of plasmid DNA based on biodegradable polyester, poly(D,L-lactide-co-4-hydroxy-L-proline). J Control Release. 2004;98(3):437–446. doi:10.1016/j.jconrel.2004.05.013.
  • Liu B, Han S-M, Tang X-Y, et al. Cervical cancer gene therapy by gene loaded PEG-PLA nanomedicine. Asian Pac J Cancer Prev. 2014;15(12):4915–4918.
  • Yang X-Z, Dou S, Sun T-M, et al. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2011;156(2):203–211. doi:10.1016/j.jconrel.2011.07.035.
  • Diao J, Wang H, Chang N, et al. PEG–PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart. Dev Biol. 2015;406(2):196–202. doi:10.1016/j.ydbio.2015.08.020.
  • Erbetta CDAC, Alves RJ, Resende JM, et al. Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol. 2012;3(2):208–225. doi:10.4236/jbnb.2012.32027.
  • Kim D, El-Shall H, Dennis D, et al. Interaction of PLGA nanoparticles with human blood constituents. Colloids and Surfaces B: Biointerfaces. 2005;40(2):83–91. doi:10.1016/j.colsurfb.2004.05.007.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043.
  • Sah H, Thoma LA, Desu HR, et al. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine. 2013;8:747. doi:10.2147/IJN.S37465.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397. doi:10.3390/polym3031377.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2010;75(1):1–18. doi:10.1016/j.colsurfb.2009.09.001.
  • J-M L, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–341. doi:10.1586/erm.09.15.
  • Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–183. doi:10.1016/j.addr.2010.10.008.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide- co-glycolide)(PLGA) devices. Biomaterials. 2000;21(23):2475–2490.
  • Sisson AL, Schroeter M, Lendlein A. Polyesters. Handbook of biodegradable polymers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 1–21.
  • Lee YS, Lim KS, Oh J-E, et al. Development of porous PLGA/PEI 1.8 k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). Journal of Controlled Release. 2015;205:128–133. doi:10.1016/j.jconrel.2015.01.004.
  • Liu P, Yu H, Sun Y, et al. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials. 2012;33(17):4403–4412. doi:10.1016/j.biomaterials.2012.02.041.
  • Dailey LA, Wittmar M, Kissel T. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. J Control Release. 2005;101(1–3):137–149. doi:10.1016/j.jconrel.2004.09.003.
  • Suh J, Choy K-L, Lai SK, et al. PEGylation of nanoparticles improves their cytoplasmic transport. Int J Nanomedicine. 2007;2(4):735.
  • Díez S, Miguéliz I, Tros de Ilarduya C. Targeted cationic poly (D, L-lactic-co-glycolic acid) nanoparticles for gene delivery to cultured cells. Cell Mol Biol Lett. 2009;14(2):347–362. doi:10.2478/s11658-009-0003-7.
  • Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol. 1997;8(4):203–209. doi:10.1002/(ISSN)1099-1581.
  • Bhavsar MD, Amiji MM. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech. 2008;9(1):288–294. doi:10.1208/s12249-007-9021-9.
  • Palama IE, Cortese B, D’Amone S, et al. mRNA delivery using non-viral PCL nanoparticles. Biomater Sci. 2015;3(1):144–151. doi:10.1039/c4bm00242c.
  • Diao HJ, Low WC, Milbreta U, et al. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release. 2015;208:85–92. doi:10.1016/j.jconrel.2015.03.005.
  • Steinbüchel A. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci. 2001;1(1):1–24. doi:10.1002/(ISSN)1616-5195.
  • Loh XJ, Ong SJ, Tung YT, et al. Incorporation of poly[(R)-3-hydroxybutyrate] into cationic copolymers based on poly(2-(dimethylamino)ethyl methacrylate) to improve gene delivery. Macromol Biosci. 2013;13(8):1092–1099. doi:10.1002/mabi.201300050.
  • Li Z, Loh XJ. Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev. 2015;44(10):2865–2879. doi:10.1039/c5cs00089k.
  • Kilicay E, Erdal E, Hazer B, et al. Antisense oligonucleotide delivery to cancer cell lines for the treatment of different cancer types. Artificial Cells, Nanomedicine, and Biotechnology. 2015;1–11. doi:10.3109/21691401.2015.1115409.
  • Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8(8):578–592. doi:10.1038/nrmicro2354.
  • Oppermann-Sanio FB, Steinbuchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften. 2002;89(1):11–22.
  • Salahuddin N, Elbarbary A, Allam NG, et al. Polyamide-montmorillonite nanocomposites as a drug delivery system: preparation, release of 1,3,4-oxa(thia)diazoles, and antimicrobial activity. J Appl Polym Sci. 2014;131(23):n/a-n/a. doi:10.1002/app.41177.
  • Guo J, Cheng WP, Gu J, et al. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci. 2012;45(5):521–532. doi:10.1016/j.ejps.2011.11.024.
  • Zhou D, Li C, Hu Y, et al. Glycopolymer modification on physicochemical and biological properties of poly(L-lysine) for gene delivery. Int J Biol Macromol. 2012;50(4):965–973. doi:10.1016/j.ijbiomac.2012.02.021.
  • Bajaj I, Singhal R. Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102(10):5551–5561. doi:10.1016/j.biortech.2011.02.047.
  • Hattori Y, Nakamura A, Arai S, et al. In vivo siRNA delivery system for targeting to the liver by poly-l-glutamic acid-coated lipoplex. Results Pharma Sci. 2014;4:1–7. doi:10.1016/j.rinphs.2014.01.001.
  • Peng S-F, Yang M-J, Su C-J, et al. Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials. 2009;30(9):1797–1808. doi:10.1016/j.biomaterials.2008.12.019.
  • Li LC, Deng J, Stephens D. Polyanhydride implant for antibiotic delivery–from the bench to the clinic. Adv Drug Deliv Rev. 2002;54(7):963–986.
  • Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889–910.
  • Azevedo C, Saiardi A. Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochem Soc Trans. 2014;42(1):98–102. doi:10.1042/BST20130111.
  • Liu J, Huang W, Pang Y, et al. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications. Chem Soc Rev. 2015;44(12):3942–3953. doi:10.1039/c5cs00318k.
  • Chaubal MV, Gupta AS, Lopina ST, et al. Polyphosphates and other phosphorus-containing polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst. 2003;20(4):295–315.
  • Wang Y-C, Yuan -Y-Y, Du J-Z, et al. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromol Biosci. 2009;9(12):1154–1164. doi:10.1002/mabi.200900253.
  • Ditto AJ, Reho JJ, Shah KN, et al. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles. Mol Pharm. 2013;10(5):1836–1844. doi:10.1021/mp300623a.
  • Huang X, Shen S, Zhang Z, et al. Cross-linked polyethylenimine-tripolyphosphate nanoparticles for gene delivery. Int J Nanomedicine. 2014;9:4785–4794. doi:10.2147/IJN.S61910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.