298
Views
54
CrossRef citations to date
0
Altmetric
Review

RNAi as a gene therapy approach

Pages 575-586 | Published online: 03 Mar 2005

Bibliography

  • NAPOLI C, LEMIEUX C, JORGENSEN R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell (1990) 2:279–289.
  • ROMANO N, MACINO G: Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Ma Microbiol (1992) 6:3343–3353.
  • ANGELL SM, BAULCOMBE DC: Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. (1997) 16:3675–3684.
  • RUIZ MT, VOINNET 0, BAULCOMBE DC: Initiation and maintenance of virus-induced gene silencing. Plant Cell (1998) 10:937–946.
  • FIRE A, XU S, MONTGOMERY MK et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature (1998) 391:806–811.
  • ••First report of RNAi.
  • MONTGOMERY MK, XU S, FIRE A: RNA as a target of double-stranded RNA- mediated genetic interference inCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA (1998) 95:15502–15507.
  • KENNERDELL JR, CARTHEW RW: Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell (1998) 95:1017–1026.
  • MISQUITTA L, PATERSON BM: Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA (1999) 96:1451–1456.
  • NGO H, TSCHUDI C, GULL K, ULLU E: Double-stranded RNA induces mRNA degradation in Bypanosoina brucei. Proc. NatL Acad. Sci. USA (1998) 95:14687–14692.
  • SANCHEZ ALVARADO A,NEWMARK PA: Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. ScL USA (1999) 96:5049–5054.
  • LOHMANN JU, ENDL I, BOSCH TC: Silencing of developmental genes in hydra. Dev. Biol. (1999) 214:211–214.
  • BAULCOMBE DC: RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Ma Biol. (1996) 32:79–88.
  • HAMILTON AJ, BAULCOMBE DC: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science (1999) 286:950–952.
  • ••First description of siRNAs.
  • HAMMOND SM, BERNSTEIN E, BEACH D, HANNON GJ: An RNA- directed nuclease mediates post-\transcriptional gene silencing in Drosophila cells. Nature (2000) 404:293–296.
  • ••First evidence for the role of a RISCin RNAi.
  • ZAMORE PD, TUSCHL T, SHARP PA, BARTEL DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell (2000) 101:25–33.
  • YANG D, LU H, ERICKSON JW: Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curt: Biol. (2000) 10:1191–1200.
  • PARRISH S, FLEENOR J, XU S, MELLO C, FIRE A: Functional anatomy of a dsRNA trigger. Differential requirement for the two trigger strands in RNA interference. Ma Cell (2000) 6:1077–1087.
  • ELBASHIR SM, LENDECKEL W, TUSCHL T: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. (2001) 15:188–200.
  • •Detailed analysis of the role of siRNAs in RNAi.
  • BERNSTEIN E, CAUDY AA, HAMMOND SM, HANNON GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature (2001) 409:363–366.
  • ••Identification of Dicer as the endonudease responsible for the cleavage of dsRNA to generate siRNAs.
  • HAMMOND SM, BOETTCHER S, CAUDY AA, KOBAYASHI R, HANNON GJ: Argonaute2, a link between genetic and biochemical analyses of RNAi. Science (2001) 293:1146–1150.
  • •Identification of Argonuate2 as a key component of RISC.
  • CERUTTI L, MIAN N, BATEMAN A: Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. (2000) 25:481–482.
  • CARMELL MA, XUAN Z, ZHANG MQ, HANNON GJ: The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.(2002) 16:2733–2742.
  • CAUDY AA, MYERS M, HANNON GJ, HAMMOND SM: Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. (2002) 16:2491–2496.
  • ISHIZUKA A, SIOMI MC, SIOMI H: A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. (2002) 16:2497–2508.
  • COGONI C, MACINO G: Gene silencingin Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature (1999) 399:166–169.
  • SMARDON A, SPOERKE JM, STACEY SC et al: EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development andRNA interference in C. elegans [published erratum appears in Can: Biol. (2000) 10(10):R393–R394]. Can: Biol. (2000) 10:169–178.
  • SIJEN T, FLEENOR J, SIMMER F et al:On the role of RNA amplification in dsRNA-triggered gene silencing. Cell (2001) 107:465–476.
  • LIPARDI C, WEI Q, PATERSON BM: RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell (2001) 107:297–307.
  • MAKEYEV EV, BAMFORD DH: Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Ma Cell (2002) 10:1417–1427.
  • ALDER MN, DAMES S, GAUDET J, MANGO SE: Gene silencing in Caenochabditis elegansby transitive RNA interference. RNA (2003) 9:25–32.
  • KASSCHAU KD, CARRINGTON JC: A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell (1998) 95:461–470.
  • TABARA H, SARKISSIAN M, KELLY WG et al: The rde- I gene, RNA interference, and transposon silencing inC. elegans. Cell (1999) 99:123–132.
  • KETTING RE HAVERKAMP TH, VAN LUENEN HG, PLASTERK RH: Mut-7of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell (1999) 99:133–141.
  • ARAVIN AA, NAUMOVA NM, TULIN AV et al: Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in theD. melanogastergermline. Can: Biol. (2001) 11:1017–1027.
  • VOLPE TA, KIDNER C, HALL IM et al.: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science (2002) 297: 1833-1837.
  • ••One of a series of papers demonstrating alink between RNAi and heterochromatin assembly.
  • REINHART BJ, BARTEL DP: Small RNAs correspond to centromere heterochromatic repeats. Science (2002) 297:1831.
  • ••One of a series of papers demonstrating alink between RNAi and heterochromatin assembly.
  • HALL IM, SHANKARANARAYANA GD, NOMA K et al.: Establishment and maintenance of a heterochromatin domain. Science (2002) 297:2232–2237.
  • ••One of a series of papers demonstrating alink between RNAi and heterochromatin assembly.
  • HALL IM, NOMA KI, GREWAL SI: RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA (2003) 100(1):193–198.
  • ••One of a series of papers demonstrating alink between RNAi and heterochromatin assembly.
  • ZILBERMAN D, CAO X,JACOBSEN SE: ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science (2003) 299:716–719.
  • GRISHOK A, PASQUINELLI AE, CONTE D et al.: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell (2001) 106:23–34.
  • ••One of a series of papers demonstrating alink between Dicer and miRNA processing.
  • HUT VAGNER G, MCLACHLAN J, PASQUINELLI AE et al.: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science (2001) 293:834–838.
  • ••One of a series of papers demonstrating alink between Dicer and miRNA processing.
  • KETTING RF, FISCHER SE, BERNSTEIN E et al.: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC. elegans. Genes Dev. (2001)15:2654–2659.
  • ••One of a series of papers demonstrating alink between Dicer and miRNA processing.
  • KNIGHT SW, BASS BL: A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science (2001) 293:2269–2271.
  • ••One of a series of papers demonstrating alink between Dicer and miRNA processing.
  • AMBROS V: MicroRNAs: tiny regulators with great potential. Cell (2001) 107:823–826.
  • MOSS EG: MicroRNAs: hidden in the genome. Can: Biol. (2002) 12:R138–R140.
  • GROSSHANS H, SLACK FJ: Micro-RNAs: small is plentiful. Cell Biol. (2002) 156:17–21.
  • PASQUINELLI AE: MicroRNAs: deviants no longer. Trends Genet. (2002) 18:171–173.
  • LAI EC: Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. (2002) 30:363–364.
  • LEE Y, JEON K, LEE JT, KIM S, KIM VN: MicroRNA maturation: stepwise processing and subcellular localization. EMBO (2002) 21:4663–4670.
  • LLAVE C, KASSCHAU KD,RECTOR MA, CARRINGTON JC: Endogenous and silencing-associated small RNAs in plants. Plant Cell (2002) 14:1605–1619.
  • LLAVE C, XIE Z, KASSCHAU KD, CARRINGTON JC: Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science (2002) 297:2053–2056.
  • REINHART BJ, WEINSTEIN EG, RHOADES MW, BARTEL B, BARTEL DP: MicroRNAs in plants. Genes Dev. (2002) 16:1616–1626.
  • LAU NC, LIM LP, WEINSTEIN EG, BARTEL DP: An abundant class of tiny RNAs with probable regulatory roles in Caenochabditis elegans. Science (2001) 294:858–862.
  • LAGOS-QUINTANA M, RAUHUT R, LENDECKEL W, TUSCHL T: Identification of novel genes coding for small expressed RNAs. Science (2001) 294:853–858.
  • LAGOS-QUINTANA M, RAUHUT R, YALCIN A et al.: Identification of tissue-specific microRNAs from mouse. Curr. Biol. (2002) 12:735–739.
  • LAGOS-QUINTANA M, RAUHUT R, MEYER J, BORKHARDT A, TUSCHL T: New microRNAs from mouse and human. RNA (2003) 9:175–179.
  • LEE RC, FEINBAUM RL, AMBROS V: The C. e/egansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell (1993) 75:843–854.
  • PASQUINELLI AE, REINHART BJ, SLACK F et al.: Conservation of the sequence and temporal expression of let-7heterochronic regulatory RNA. Nature (2000) 408:86–89.
  • PASQUINELLI AE, RUVKUN G: Control of developmental timing by micro RNAs and their targets. Ann. Rev Cell Dev. Biol. (2002) 18:495–513.
  • BANERJEE D, SLACK F: Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays (2002) 24:119–129.
  • CLEMENS MJ, ELIA A: The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res. (1997) 17:503–524.
  • PLAYER MR, TORRENCE PF: The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol The]: (1998) 78:55–113.
  • WIANNY F, ZERNICKA-GOETZ M: Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. (2000) 2:70–75.
  • SVOBODA P, STEIN P, HAYASHI H, SCHULTZ RM: Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development (2000) 127:4147–4156.
  • UI-TEI K, ZENNO S, MIYATA Y, SAIGO K: Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. (2000) 479:79–82.
  • MINKS MA, WEST DK, BENVIN S, BAGLIONI C: Structural requirements of double-stranded RNA for the activation of 2',5'-oligo (A) polymerase and protein kinase of interferon-treated HeLa cells.Biol Chem. (1979) 254:10180–10183.
  • MANCHE L, GREEN SR, SCHMEDT C, MATHEWS MB: Interactions between double-stranded RNA regulators and the protein kinase DAI. MM. Cell Biol. (1992) 12:5238–5248.
  • CAPLEN NJ, PARRISH S, IMANI F, FIRE A, MORGAN RA: Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Nati Acad. ScL USA (2001) 98:9742–9747.
  • ••Demonstration that siRNAs can inducegene-specific silencing in mammalian cells.
  • ELBASHIR SM, HARBORTH J, LENDECKEL W et al: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature (2001) 411:494–498.
  • ••Demonstration that siRNAs can inducegene-specific silencing in mammalian cells.
  • CAPLEN NJ, FLEENOR J, FIRE A, MORGAN RA: dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene (2000) 252:95–105.
  • CLEMENS JC, WORBY CA, SIMONSON-LEFF N et al.: Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Nati Acad. Sci. USA (2000) 97:6499–6503.
  • BILLY E, BRONDANI V, ZHANG H, MULLER U, FILIPOWICZ W: Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Nati Acad. Sci. USA (2001) 98:14428–14433.
  • •Demonstration that large dsRNAs can induce gene-specific silencing in mammalian embryonic cells.
  • PROVOST P, DISHART D, DOUCET J et al.: Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO (2002) 21:5864–5874.
  • ZHANG H, KOLB FA, BRONDANI V, BILLY E, FILIPOWICZ W: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP EMBO (2002) 21:5875–5885.
  • SCHWARZ DS, HUTVAGNER G, HALEY B, ZAMORE PD: Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Ma Cell (2002) 10:537–548.
  • STEIN P, SVOBODA P, ANGER M, SCHULTZ RM: RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA (2003) 9:187–192.
  • ELBASHIR SM, HARBORTH J, WEBER K, TUSCHL T: Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods (2002) 26:199–213.
  • HOLEN T, AMARZGUIOUI M, WIIGER MT, BABAIE E, PRYDZ H: Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. (2002) 30:1757–1766.
  • PADDISON PJ, CAUDY AA, BERNSTEIN E, HANNON GJ, CONKLIN DS: Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. (2002) 16:948–958.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: A system for stable expression of short interfering RNAs in mammalian cells. Science (2002) 296:550–553.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • VARAMBALLY S, DHANASEKARAN SM, ZHOU M et al.: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature (2002) 419:624–629.
  • DEBES JD, SCHMIDT LJ, HUANG H, TINDALL DJ: P300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res. (2002) 62:5632–5636.
  • YOON HS, CHEN X, YANG VW: Kruppel-like factor 4 mediates p53-dependent Gl/S cell cycle arrest in response to DNA damage. J. Biol. Chem. (2003) 278:2101–2105.
  • BAKKER J, LIN X, NELSON WG: Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J. Biol. Chem. (2002) 277:22573–22580.
  • KAPADIA SB, BRIDEAU-ANDERSEN A,CHISARI FV: Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Nati Acad. ScL USA (2003) 100:2014–2018.
  • RANDALL G, GRAKOUI A, RICE CM: Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Nati Acad. Sci. USA (2003) 100:235–240.
  • WILSON JA, JAYASENA S, KHVOROVA A et al.: RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Nati Acad. Sci. USA (2003) 100:2783–2788.
  • KRICHEVSKY AM, KOSIK KS: RNAi functions in cultured mammalian neurons. Proc. Natl. Acad. Sci. USA (2002) 99:11926–11929.
  • YI CE, BEKKER JM, MILLER G, HILL KL, CROSBIE RH: Specific and potent RNA interference in terminallydifferentiated myotubes. I. Biol. Chem.(2002) 278(2):934–939.
  • MCMANUS MT, HAINES BB, DILLON CP et al.: Small interfering RNA-mediated gene silencing in T lymphocytes.Immunol (2002) 169:5754–5760.
  • DONZE 0, PICARD D: RNA interference in mammalian cells using siRNAs synthesized with Ti RNA polymerase. Nucleic Acids Res. (2002) 30:e46.
  • YU JY, DERUITER SL, TURNER DL: RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Nati Acad. Sci. USA (2002) 99:6047–6052.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • KAWASAKI H, SUYAMA E, IYO M, TAIRA K: siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. (2003) 31:981–987.
  • MYERS JW, JONES JT, MEYER T, FERRELL JE: Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol (2003) 21:324–328.
  • MCMANUS MT, PETERSEN CP, HAINES BB, CHEN J, SHARP PA: Gene silencing using micro-RNA designed hairpins. RNA (2002) 8:842–850.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • SUI G, SOOHOO C, AFFAR EL B et al.: A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Nati Acad. ScL USA (2002) 99:5515–5520.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • PAUL CP, GOOD PD, WINER I, ENGELKE DR: Effective expression of small interfering RNA in human cells. Nat. Biotechnol (2002) 20:505–508.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • MIYAGISHI M, TAIRA K: U6 promoter driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol (2002) 20:497–500.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • CASTANOTTO D, LI H, ROSSI JJ: Functional siRNA expression fromtrans fected PCR products. RNA (2002) 8:1454–1460.
  • PADDISON PJ, CAUDY AA, HANNON GJ: Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA (2002) 99:1443–1448.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell (2002) 2:243–247.
  • DEVROE E, SILVER PA: Retrovirus-delivered siRNA. BMC Biotechnol (2002) 2:15.
  • BARTON GM, MEDZHITOV R: Retroviral delivery of small interfering RNA into primary cells. Proc. Nati Acad. Sci. USA (2002) 99:14943–14945.
  • HEMANN MT, FRIDMAN JS, ZILFOU JT et at An epiallelic series of p53 hypomorphs created by stable RNAi produced distinct tumor phenotypesM vivo. Nat. Genet. (2003) 33(3):396–400.
  • TISCORNIA G, SINGER 0, IKAWA M, VERMA IM: A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA (2003) 100:1844–1848.
  • ••One of a series of reports describing theuse of RNAi to generate transgenic mice.
  • RUBINSON DA, DILLON CP, KWIATKOWSKI AV et al.: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. (2003) 33:401–406.
  • ••One of a series of reports describing theuse of RNAi to generate transgenic mice.
  • CHIU YL, RANA TM: RNAi in human cells: basic structural and functional features of small interfering RNA. Ma Cell (2002) 10:549–561.
  • HAMADA M, OHTSUKA T, KAWAIDA R et al.: Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs. Antisense Nucleic Acid Drug Dev. (2002) 12:301–309.
  • AMARZGUIOUI M, HOLEN T, BABAIE E, PRYDZ H: Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. (2003) 31:589–595.
  • DOENCH JG, PETERSEN CP, SHARP PA: siRNAs can function as miRNAs. Genes Dev. (2003) 17:438–442.
  • VICKERS TA, KOO S, BENNETT CF et al.: Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. (2003) 278:7108–7118.
  • AOKI Y, CIOCA D, OIDAIRA H, KAMIYA J, KIYOSAWA K: RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin. Exp. Pharmacol Physiol (2003) 30:96–102.
  • MIYAGISHI M, HAYASHI M, TAIRA K: Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. (2003) 13:1–7.
  • FRASER AG, KAMATH RS, ZIPPERLEN P et al.: Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature (2000) 408:325–330.
  • GONCZY P, ECHEVERRI G,OEGEMA K et al.: Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature (2000) 408:331–336.
  • PIANO F, SCHETTERDAGGER AJ, MANGONE M, STEIN L, KEMPHUES KJ: RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Carr: Biol. (2000) 10:1619–1622.
  • PIANO F, SCHETTER AJ, MORTON DG et al.: Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Can: Biol. (2002) 12:1959–1964.
  • LEE SS, LEE RY, FRASER AG et al.: A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. (2003) 33:40–48.
  • KAMATH RS, FRASER AG, DONG Y et al.: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature (2003) 421:231–237.
  • ASHRAFI K, CHANG FY, WATTS JL et al.: Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature (2003) 421:268–272.
  • POTHOF J, VAN HAAFTEN G, THIJSSEN K et al.: Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. (2003) 17:443–448.
  • HANNON GJ: RNA interference. Nature (2002) 418:244–251.
  • PADDISON PJ, HANNON GJ: RNA interference: the new somatic cell genetics? Cancer Cell (2002) 2:17–23.
  • FRANKISH H: Consortium uses RNAi to uncover genes' function. Lancet (2003) 361:584.
  • CALIN GA, DUMITRU CD,SHIMIZU M et al.: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA (2002) 99:15524–15529.
  • RAJENDRAN RR, NYE AC, FRASOR J et al.: Regulation of nuclear receptor transcriptional activity by a novel DEAD Box RNA helicase (DP97). Biol. Chem. (2003) 278:4628–4638.
  • ROBERT ME MORIN S, BEAULIEU N et al.: DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat. Genet. (2003) 33:61–65.
  • SIEGMUND D, HADWIGER P, PFIZENMAIER K, VORNLOCHER HP, WAJANT H: Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol. Med. (2002) 8:725–732.
  • DITULLIO RA, MOCHAN TA, VENERE M et al.: 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell Biol. (2002) 4:998–1002.
  • JIANG M, MILNER J: Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene (2002) 21:6041–6048.
  • ZHANG D, LI F, WEIDNER D, MNJOYAN ZH, FUJISE K: Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J. Biol. Chem. (2002) 277:37430–37438.
  • LIU J, YAO F, WU R et al.: Mediation of the DCC apoptotic signal by DIP13 alpha. Biol Chem. (2002) 277:26281–26285.
  • ZOU X, RAY D, AZIYU A et al.: Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev. (2002) 16:2923–2934.
  • TUYNDER M, SUSINI L, PRIEUR S et al.: Biological models and genes of tumor reversion: cellular reprogramming through tptl/TCTP and SIAH-1. Proc. Natl. Acad. Sci. USA (2002) 99:14976–14981.
  • SHU X, WU W, MOSTELLER RD, BROEK D: Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol. Cell Biol. (2002) 22:7758–7768.
  • SPANKUCH-SCHMITT B, BEREITER-HAHN J, KAUFMANN M, STREBHARDT K: Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. Natl. Cancer Inst. (2002) 94:1863–1877.
  • CIOCA DP, AOKI Y, KIYOSAWA K: RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene The]: (2003) 10:125–133.
  • SCHERR M, BATTMER K, WINKLER T et al.: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood (2003) 101:1566–1569.
  • WILDA M, FUCHS U, WOSSMANN W, BORKHARDT A: Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene (2002) 21:5716–5724.
  • NAGY P, ARNDT-JOVIN DJ,JOVIN TM: Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbBl-overexpressing cells. Exp. Cell Res. (2003) 285:39–49.
  • ZHANG L, YANG N, MOHAMED-HADLEY A, RUBIN SC, COUKOS G: Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. (2003) 303:1169–1178.
  • TAKAHASHI N, YANAGIHARA M, OGAWA Y, YAMANOHA B, ANDOH T: Down-regulation of Bc1-2-interacting protein BAG-1 confers resistance to anti-cancer drugs. Biochem. Biophys. Res. Commun. (2003) 301:798–803.
  • WU H, HAIT WN, YANG JM: Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. (2003) 63:1515–1519.
  • DRUKER BJ: Perspectives on the development of a molecularly targeted agent. Cancer Cell (2002) 1:31–36.
  • LEE NS, DOHJIMA T, BAUER G et al.: Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. (2002) 20:500–505.
  • ••One of a series of reports describing thedevelopment and use of shRNAs.
  • CAPODICI J, KARIKO K,WEISSMAN D: Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Immunol. (2002) 169:5196–5201.
  • PARK WS, MIYANO-KUROSAKI N, HAYAFUNE M et al.: Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res. (2002) 30:4830–4835.
  • JACQUE JM, TRIQUES K,STEVENSON M: Modulation of HIV-1 replication by RNA interference. Nature(2002) 418:435–438.
  • COBURN GA, CULLEN BR: Potent and specific inhibition of human immunodeficiency virus Type 1 replication by RNA interference. Virol. (2002) 76:9225–9231.
  • NOVINA CD, MURRAY MF,DYKXHOORN DM et al.: siRNA-directed inhibition of HIV-1 infection. Nat. Med. (2002) 8:681–686.
  • MARTINEZ MA, GUTIERREZ A, ARMAND-UGON M et al.: Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS (2002) 16:2385–2390.
  • QIN XF, AN DS, CHEN IS,BALTIMORE D: Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Nati Acad. Sci. USA (2003) 100:183–188.
  • SEO MY, ABRIGNANI S,HOUGHTON M, HAN JH: Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. j. Vim/. (2003) 77:810–812.
  • MCCAFFREY AP, MEUSE L, PHAM TT et al.: RNA interference in adult mice. Nature (2002) 418:38–39.
  • ••SiRNA-mediated RNAi in vivo.
  • GITLIN L, KARELSKY S, ANDINO R: Short interfering RNA confers intracellular antiviral immunity in human cells. Nature (2002) 418:430–434.
  • BITKO V, BARIK S: Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol (2001) 1:34.
  • GE Q, MCMANUS MT, NGUYEN T et al.: RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA (2003) 100:2718–2723.
  • JIA Q, SUN R: Inhibition of gammaherpesvirus replication by RNA interference. Viral. (2003) 77:3301–3306.
  • ADELMAN ZN, SANCHEZ-VARGAS I, TRAVANTY EA et al: RNA silencing of dengue virus Type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNAderived from the virus genome. Vim/.(2002) 76:12925–12933.
  • CAPLEN N, ZHENG Z, FALGOUT B, MORGAN R: Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. MM. Ther: (2002) 6:243–251.
  • MARTINEZ MA, GUTIERREZ A, ARMAND-UGON M et al.: Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS (2002) 16:2385–2390.
  • LI WX, DING SW: Viral suppressors of RNA silencing. Curc Opin. Biotechnol (2001) 12:150–154.
  • SONG E, LEE SK, WANG Jet al.: RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. (2003) 9:347–351.
  • CAPLEN NJ, TAYLOR JP, STATHAM VS et al.: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. (2002) 11:175–184.
  • XIA H, MAO Q, PAULSON HL, DAVIDSON BL: siRNA-mediated gene silencing in vitro and in viva Nat. Biotechnol (2002) 20:1006–1010.
  • LEWIS DL, HAGSTROM JE, LOOMIS AG, WOLFF JA, HERWEIJER H: Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. (2002) 32:107–108.
  • ••SiRNA-mediated RNAi in vivo.
  • HASUVVA H, KASEDA K, EINARSDOTTIR T, OKABE M: Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. (2002) 532:227–230.
  • ••One of a series of reports describing theuse of RNAi to generate transgenic mice.
  • CARMELL MA, ZHANG L, CONKLIN DS, HANNON GJ, ROSENQUIST TA: Germline transmission of RNAi in mice. Nat. Strad. Biol. (2003) 10:91–92.
  • ••One of a series of reports describing theuse of RNAi to generate transgenic mice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.