255
Views
90
CrossRef citations to date
0
Altmetric
Review

Enhancing and targeting nucleic acid delivery by magnetic force

, , , &
Pages 745-758 | Published online: 03 Mar 2005

Bibliography

  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl. I Med (2003) 348(3):255–256.
  • FINSINGER D, REMY JS, ERBACHER P, KOCH C, PLANK C: Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery. Gene The,: (2000) 7(14):1183–1192.
  • ZOU SM, ERBACHER P, REMY JS, BEHR JP: Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse." Gene Med (2000) 2(2):128–134.
  • OH YK, KIM JP, YOON H, KIM JM, YANG JS, KIM CK: Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene The,: (2001) 8(20):1587–1592.
  • CHUCK AS, CLARKE MEPALSSON BO: Retroviral infection is limited by Brownian motion. Hum. Gene The]: (1996) 7(13):1527–1534.
  • SEISENBERGER G, RIED MU, ENDRESS T, BUNING H, HALLEK M, BRAUCHLE C: Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science (2001) 294(5548):1929–1932.
  • OGRIS M, BRUNNER S, SCHULLER S, KIRCHEIS R, WAGNER E: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Tiler. (1999) 6(4):595–605.
  • CHOLLET P, FAVROT MC, HURBIN A, COLL JL: Side-effects of a systemicinjection of linear polyethylenimine-DNA complexes.j Gene Med. (2002) 4(1):84–91.
  • PLANK C, MECHTLER K, SZOKA FC, WAGNER E: Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. (1996) 7(12):1437–1446.
  • WARD CM, READ ML, SEYMOUR LW: Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood (2001) 97(8):2221–2229.
  • KASS-EISLER A, LEINWAND L, GALL J, BLOOM B, FALCK-PEDERSEN E: Circumventing the immune response to adenovirus-mediated gene delivery. Gene The]: (1996) 3:154–162.
  • RUPONEN M, YLA-HERTTUALA S, URTTI A: Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim. Biophys. Acta Biomembranes (1999) 1415(2):331–341.
  • FISHER KD, STALLWOOD Y, GREEN NK, ULBRICH K, MAUTNER V, SEYMOUR LW: Polymer-coated adenovirus permits efficient retargeting and evades neutralizing antibodies. Gene The]: (2001) 8:341–348.
  • OUPICKY D, CARLISLE RC, SEYMOUR LW: Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene The,: (2001) 8(9):713–724.
  • SMYTH TEMPLETON N: Myths concerning the use of cationic liposomes in vivo. Expert Opin. Biol. Tiler (2003) 3(1):57–69.
  • LUO D, SALTZMAN WM: Enhancement of transfection by physical concentration ofDNA at the cell surface. Nature Biotechnol. (2000) 18(8):893–895.
  • •Describes a method that can be considered a 'precursor' to magnetofection.
  • BUNNELL BA, MUUL LM,DONAHUE RE, BLAESE RM, MORGAN RA: High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA (1995) 92(17):7739–7743.
  • KLEIN TM, ARENTZEN R, LEWIS PA, FITZPATRICK-MCELLIGOTT S: Transformation of microbes, plants and animals by particle bombardment. Biotechnology (NY) (1992) 10(3):286–291.
  • MATHIESEN I: Electropermeabilization of skeletal muscle enhances gene transfer M vivo. Gene The,: (1999) 6(4):508–514.
  • SOMIARI S, GLASSPOOL-MALONE J, DRABICK JJ et al: Theory and in vivo application of electroporative gene delivery. MM. Ther. (2000) 2(3):178–187.
  • ZHANG G, BUDKERV, WOLFF JA: High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. (1999) 10(10):1735–1737.
  • SCHERER F, ANTON M,SCHILLINGER U et al.: Magnetofection: enhancing and targeting gene delivery by magnetic force M vitro and in vivo.Gene The,: (2002) 9(2):102–109.
  • PLANK C, SCHERER F,SCHILLINGER U, ANTON M, BERGEMANN C: Magnetofection: enhancing and targeting gene delivery by magnetic force. Ear: Cells Mater. (2002) 3 (Suppl. 2):79–80.
  • KROTZ F, WIT C, SOHN HY et al.: Magnetofection-A highly efficient tool for antisense oligonucleotide delivery M vitro and in vivo. Mol. The,: (2003) 7(5):700–710.
  • ••First paper to describe the applicability ofmagnetofection to oligonucleoti dedelivery.
  • PLANK C, SCHERER F,SCHILLINGER U, BERGEMANN C, ANTON M: Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. j. Liposome Res (2003) 13(1):29–32.
  • PLANK C, SCHILLINGER U, SCHERER F et al.: The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. (2003) 384:737–747.
  • •Review paper that discusses the background of the magnetofection method. Presents a collection of previously unpublished results.
  • WIDDER KJ, SENYEL AE,SCARPELLI GD: Magnetic microspheres: a model system of site specific drug deliveryM vivo. Proc. Soc. Exp. Biol. Med (1978) 158(2):141–146.
  • ALKSNE JF, FINGERHUT AG: Magnetically controlled metallic thrombosis of intracranial aneurysms. A preliminary report. Bull. Los Angeles Nemo]. So c (1965) 30(3):153–155.
  • FINGERHUT AG, ALKSNE JF: Thrombosis of intracranial aneurysms. An experimental approach utilizing magnetically controlled iron particles. Radiology (1966) 86(2):342–343.
  • ALKSNE JF, FINGERHUT AG, RAND RW: Magnetically controlled focal intravascular thrombosis in dogs. Neurosurg. (1966) 25(5):516–525.
  • MEYERS PH, NICE CM JR, MECKSTROTH GR, BECKER HC, MOSER PJ, GOLDSTEIN M: Pathologic studies following magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent. Am. I Roentgenol Radium Ther. Nucl. Med. (1966) 96(4):913–921.
  • SCHWERTMANN U, CORNELL RM: Iron oxides M the laboratory Preparation and characterization. WileyNCH,Weinheim (1991).
  • FAHLVIK AK, KLAVENESS J,STARK DD: Iron oxides as MR imaging contrast agents. Magn. Reson. Imaging (1993) 3(1):187–194.
  • ••Good review of the physical terminology,characterisation and classification of magnetic iron oxide particles. The paper is a good example of the close relationship between magnetic drug carriers and contrast agents for magneticresonance imaging.
  • SENYEI AE, REICH SD, GONCZY C, WIDDER KJ: In vivo kinetics of magnetically targeted low-dose doxorubicin. Pharm. Sci (1981) 70(4):389–391.
  • WIDDER KJ, MORRIS RM, POORE G, HOWARD DP JR, SENYEI AE:Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. USA (1981) 78(1):579–581.
  • WIDDER KJ, MORRIS RM,POORE GA, HOWARD DP, SENYEI AE: Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur. Cancer Clin. Omni (1983) 19(1):135–139.
  • WIDDER KJ, MARINO PA, MORRIS RM, HOWARD DP, POORE GA, SENYEI AE: Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: ultrastructural evaluation of microsphere disposition. Eur. Cancer Clin. Oncol (1983) 19(1):141–147.
  • GUPTA PK, HUNG CT: Comparative disposition of adriamycin delivered via magnetic albumin microspheres in presence and absence of magnetic field in rats. Life Sci (1990) 46(7):471–479.
  • GUPTA PK, HUNG CT: Effect of carrier dose on the multiple tissue disposition of doxorubicin hydrochloride administered via magnetic albumin microspheres in rats.Pharm. Sci (1989) 78(9):745–748.
  • GUPTA PK, HUNG CT, RAO NS: Ultrastructural disposition of adriamycin-associated magnetic albumin microspheres in rats.' Pharm Sci. (1989) 78(4):290–294.
  • GUPTA PK, HUNG CT: Magnetically controlled targeted micro-carrier systems. Life Sci (1989) 44(3):175–186.
  • ••Review of the early magnetic drugtargeting work.
  • GUPTA PK, HUNG CT: Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats.' Microencapsul (1990) 7(1):85–94.
  • KATO T, NEMOTO R, MORI H, UNNO K, GOTO A, HOMMA M: [An approach to magnetically controlled cancer chemotherapy. I. Preparation and properties of ferromagnetic mitomycin C microcapsules (author's transl.)]. Nippon Gan Chiryo Cakkai Slit (1980) 15(5):876–880.
  • KATO T, NEMOTO R, MORI H et al.:Magnetic microcapsules for targeted delivery of anticancer drugs. Appl. Biochem. Biotechnol (1984) 10:199–211.
  • LOBBE AS, BERGEMANN C,HUHNT W et al.: Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. (1996) 56(20):4694–4701.
  • LOBBE AS, BERGEMANN C, RIESS H et al.: Clinical experiences with magnetic drug targeting: a Phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. (1996) 56(20):4686–4693.
  • GOODWIN SC, BITTNER CA, PETERSON CL, WONG G: Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxica Sci. (2001) 60(1):177–183.
  • GOODWIN SC, PETERSON C, HOH C, BITTNER CA: Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. I Magn. Magn. Mat (1999) 194:132–139.
  • RUDGE SR, KURTZ TL, VESSELY CR, CATTERALL LG, WILLIAMSON DL: Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials (2000) 21(14):1411–1420.
  • RUDGE S, PETERSON C, VESSELY C, KODA J, STEVENS S, CATTERALL L: Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC).Control Release (2001) 74(1-3):335–340.
  • JOHNSON J, KENT T, KODA J, PETERSON C, RUDGE S,TAPOLSKY G: The MTC technology: a platform technology for the site-specific delivery of pharmaceutical agents. Eur. Cells Mater. (2002) 3 (Suppl. 2):12–15.
  • LOBBE AS, ALEXIOU C,BERGEMANN C: Clinical applications of magnetic drug targeting. I Surg. Res (2001) 95(2):200–206.
  • •Good review of magnetic drug targeting. Provides a comprehensive discussion of the current limitations of the technique.
  • HUGHES C, GALEA-LAURI J,FARZANEH F, DARLING D: Streptavidin paramagnetic particles provide a choice of three affinity- based capture and magnetic
  • ••concentration strategies for retroviral vectors. MM. Ther. (2001) 3(4):623–630. Describes the use of magnetic particles for the isolation of retroviruses and demonstrates magnetic field-dependent retroviral infection in vitro.
  • REMY JS, ABDALLAH B, ZANTA MA, BOUSSIF O, BEHR JP, DEMENEIX B: Gene transfer with lipospermines and polyethylenimines. Adv. Drug Del. Rev (1998) 30(1-3):85–95.
  • BOUSSIF O, LEZOUALC'H F,ZANTA MA et al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA (1995) 92(16):7297–7301.
  • CURIEL DT, AGARWAL S, WAGNER E, COTTEN M: Adenovirus enhancement of transferrin polylysine-mediated gene delivery. Proc. Nati Acad. Sci. USA (1991) 88(19):8850–8854.
  • WAGNER E, ZATLOUKAL K,COTTEN M et al.: Coupling of adenovirus to transferrin polylysine DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc. Natl. Acad. Sci. USA (1992) 89(13):6099–6103.
  • MAH C, FRAITES TJJ, ZOLOTUKHIN I et al.: Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. MM. Ther. (2002) 6(1):106–112.
  • •Demonstrates magnetic field-dependent adeno-associated virus infection in vitro.
  • PANDORI MW, HOBSON DA, SANO T: Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy to localized gene delivery. Vi rology (2002) 299:204–212.
  • •Demonstrates magnetic field-dependent adenoviral infection in vitro.
  • HIEMENZ PC: Principles of colloid andsurface chemistry (2nd Ed.I Marcel Dekker, Inc., New York (1986).
  • GOODMAN R, BLANK M: Insights into electromagnetic interaction mechanisms. .1. Cell Physiol (2002) 192(1):16–22.
  • HUTH S, LAUSIERJ, GERSTING S et al.: Insights into the mechanism of magnetofection using PEI- based magnetofectins for gene transfer. (In Press).
  • •Discusses the mechanism of magnetofection.
  • WEISSLEDER R, STARK DD, ENGELSTAD BL et al.: Superparamagnetic iron oxide: pharmacokinetics and toxicity. AIR Am. Roentgenol (1989) 152(1):167–173.
  • WUNDERBALDINGER P,BOGDANOV A, WEISSLEDER R: New approaches for imaging in gene therapy. Eur. Radio]. (2000) 34(3):156–165.
  • LEWIN M, CARLESSO N, TUNG CH et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol (2000) 18(4):410–414.
  • WEISSLEDER R, MOORE A, MAHMOOD U et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. (2000) 6(3):351–355.
  • ••One of the many excellent publicationsfrom this group who work on all aspects of magnetic resonance imaging,including innovative applications of magnetic nanoparticles far beyond imaging purposes.
  • BABINC OVA M, BABINEC P,BERGEMANN C: High-gradient magnetic capture of ferrofluids: implications for drug targeting and tumor embolization.Z Naturforsch.(2001) 56(9–10):909–911.
  • •Describes a method that may serve as a basis for using magnetic resonance imaging equipment for magnetic drug targeting.
  • ZBOROWSKI M, FUH CB, GREEN R, SUN L, CHALMERS JJ: Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal. Chem. (1995) 67(20):3702–3712.
  • ••Important for readers who are interested inthe physics of magnetic drug targeting and magnetic separation techniques.
  • VOLTAIRAS PA, FOTIADIS DI, MICHALIS LK: Hydrodynamics of magnetic drug targeting. J. Biomech. (2002) 35(6):813–821.
  • ••Important for readers who are interested inthe physics of magnetic drug targeting and magnetic separation techniques.
  • BABINCOVA M, BABINEC P: Possibility of magnetic targeting of drugs using magnetoliposomes. Pharmazie (1995) 50(12):828–829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.