62
Views
8
CrossRef citations to date
0
Altmetric
Review

T cell-based therapies for EBV-associated malignancies

Pages 11-21 | Published online: 03 Mar 2005

Bibliography

  • REGENMORTEL MHV, FAUQUET CM, BISHOP DHL et al.: The Seventh Report of the International Committee on Taxonomy of Viruses. Regenmortel MHV, Fauquet CM, Bishop DHL et al. (Eds), Academic Press, San Diego (2000).
  • HENLE G, HENLE W, CLIFFORD P et al.: Antibodies to Epstein-Barr virus in Burkitt's lymphoma and control groups. .1. Natl. Cancerinst. (1969) 43:1147–1157.
  • TIERNEY RJ, STEVEN N, YOUNG LS, RICKINSON AB: Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Vim/. (1994) 68:7374–7385.
  • JOSEPH AM, BABCOCK GJ, THORLEY-LAWSON DA: EBV persistence involves strict selection of latently infected B cells. J. Immunol. (2000) 165:2975–2981.
  • RICKINSON AB, KIEFF E: Epstein Barr virus. In: Fields Virology Knipe DM, Howley PM (Eds), Lippincott Williams and Wilkins, Philadelphia (2001) : 2511–2573.
  • IARC MONOGRAPH (70): Epstein Barr virus and Kaposi sarcoma herpesvirus/ human herpesvirus 8. IARC Scientific Publications, Lyon (1997).
  • SHAPIRO RS, MCCLAIN K, FRIZZERA G et al: Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood (1988) 71:1234–1243.
  • KIEFF E, RICKINSON AB: Epstein Barrvirus and its replication. In: Fields VirologyKnipe DM, Howley PM (Eds), LippincottWilliams and Wilkins, Philadelphia (2001):2575–2627.
  • KILGER E, PECHER G, SCHWENK A,HAMMERSCHMIDT W: Expression of mucin (MUC-1) from a mini-Epstein-Barr virus in immortalized B-cells to generate tumor antigen specific cytotoxic T cells. Gene Med. (1999) 1:84–92.
  • SAVOLDO B, CUBBAGE ML, DURETT AG et al.: Generation of EBV-specific CD4+ cytotoxic T cells from virus naive individuals. Immunol (2002) 168:909–918.
  • RICKINSON AB, MOSS DJ: Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Ann. Rev Immunol (1997) 15:405–431.
  • DUNNION DJ, CYWINSKI AL, TUCKER VC et al.: Human antigen-presenting cell/tumour cell hybrids stimulate strong allogeneic responses and present tumour-associated antigens to cytotoxic T cells in vitro. Immunology (1999) 98:541–550.
  • MOOSMANN A, KHAN N,COBB OLD M et al.: B cells immortalized by a mini-Epstein-Barr virus encoding a foreign antigen efficiently reactivate specific cytotoxic T cells. Blood (2002) 100:1755–1764.
  • SWINNEN LJ,COSTANZO-NORDIN MR, FISHER SG et al.: Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl. I Med. (1990) 323:1723–1728.
  • WALKER RC, PAYA CV,MARSHALL WF et al.: Pretransplantation seronegative Epstein-Barr virus status is the primary risk factor for posttransplantation lymphoproliferative disorder in adult heart, lung, and other solid organ transplantations.j Heart Lung Transplant. (1995) 14:214–221.
  • HO M: Risk factors and pathogenesis of posttransplant lymphoproliferative disorders. Transplant. Proc. (1995) 27:38–40.
  • CURTIS RE, TRAVIS LB, ROWLINGS PA et al.: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood (1999) 94:2208–2216.
  • STRAATHOF KC, BOLLARD CM, ROONEY CM, HESLOP HE: Immunotherapy for Epstein-Barr virus-associated cancers in children. Oncologist (2003) 8:83–98.
  • •A detailed review of EBV-associated malignancies in children.
  • GROSS TG, HINRICHS SH, DAVIS JRet al.: Depletion of EBV-infected cells in donor marrow by counterflow elutriation. Exp. Hematol (1998) 26:395–399.
  • HALE G, WALDMANN H: Risks of developing Epstein-Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. Blood (1998) 91:3079–3083.
  • CAVAZZANA-CALVO M,BENSOUSSAN D, JABADO N et al: Prevention of EBV-induced B-lymphoproliferative disorder by ex vivo marrow B-cell depletion in HLA-phenoidentical or non-identical T-depleted bone marrow transplantation. Br. Haematol (1998) 103:543–551.
  • LUCAS KG, BURTON RL,ZIMMERMAN SE et al.: Semiquantitative Epstein-Barr virus (EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation. Blood (1998) 91:3654–3661.
  • DIEHL V, SEXTRO M, FRANKLIN J et al.: Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin's disease and lymphocyte-rich classical Hodgkin's disease: report from the European Task Force on Lymphoma Project on Lymphocyte-Predominant Hodgkin's Disease." Clin. Oncol (1999) 17:776–783.
  • VAN LEEUWEN FE, KLOKMAN WJ, VEER MB et al.: Long-term risk of second malignancy in survivors of Hodgkin's disease treated during adolescence or young adulthood. Clin. Omni (2000) 18:487–497.
  • AISENBERG AC: Problems in Hodgkin'sdisease management. Blood (1999) 93:761–779.
  • DEACON EM, PALLESEN G,NIEDOBITEK Get al.: Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. I Exp. Med. (1993) 177:339–349.
  • NIEDOBITEK G, KREMMER E, HERBST H et al: Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin's disease and infectious mononucleosis. Blood (1997) 90: 1664-1672.
  • PALLESEN G,HAMILTON-DUTOIT SJ, ROWE M, YOUNG LS: Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet (1991) 337:320–322.
  • GRASSER FA, MURRAY PG, KREMMER E et al.: Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin's disease. Blood (1994) 84:3792–3798.
  • MURRAY PG, CONSTANDINOU CM, CROCKER J, YOUNG LS,AMBINDER RF: Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin's disease. Blood(1998) 92:2477–2483.
  • LEE SP, CONSTANDINOU CM, THOMAS WA et al.: Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein-Barr virus-specific cytotoxicT-cell recognition. Blood (1998) 92:1020–1030.
  • PARKIN DM, WHELAN SL, FERLAY J, RAYMOND L, YOUNG J: Cancer Incidence in Five Continents, vol VLParkin DM, Whelan SL, Ferlay J,Raymond L, Young J (Eds), IARC Scientific Publications, Lyon (1997).
  • WOLF H, ZUR HAUSEN H,BECKER V: EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat. New Biol. (1973) 244:245–247.
  • YOUNG LS, DAWSON CW, CLARK D et al.: Epstein-Barr virus gene expression in nasopharyngeal carcinoma. Gen. Virol (1988) 69(Pt 5):1051–1065.
  • FAHRAEUS R, FU HL, ERNBERG I et al.: Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. hat. I Cancer (1988) 42:329–338.
  • LENNETTE ET, WINBERG G, YADAV M, ENBLAD G, KLEIN G: Antibodies to LMP2A/2B in EBV-carrying malignancies. Eur.j Cancer (1995) 31A:1875–1878.
  • BROOKS L, YAO QY, RICKINSON AB, YOUNG LS: Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts.' Virol (1992) 66:2689–2697.
  • KHANNA R, BUSSON P, BURROWS SR et al.: Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res. (1998) 58:310–314.
  • LEE SP, CHAN AT, CHEUNG ST et al.: CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. 1 kninunol. (2000) 165:573–582.
  • BURKITT D: A childrens' cancer dependent upon climatic factors. Nature (1962) 194:232–234.
  • MAGRATH I: The pathogenesis of Buricitt's lymphoma. Adv. Cancer Res. (1990) 55:133–270.
  • LEVITSKAYA J, CORAM M,LEVITSKY V et at Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature (1995) 375:685–688.
  • ••An important report describing protectionfrom the HLA class I processing pathway mediated by the EBNA1 GAr domain.
  • LEVITSKAYA J, SHARIPO A, LEONCHIKS A, CIECHANOVER A, MASUCCI MG: Inhibition of obiquitin/ proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. NatL Acad. Sci. USA (1997) 94:12616–12621.
  • BLAKE N, LEE S, REDCHENKO I et al.:Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. kninunio, (1997) 7:791–802.
  • YIN Y, MANOURY B, FAHRAEUS R: Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science (2003) 301:1371–1374.
  • KHANNA R, BURROWS SR, STEIGERWALD-MULLEN PM et al.: Targeting Epstein-Barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing. Int. Inainunol. (1997) 9:1537–1543.
  • KHANNA R, BURROWS SR,THOMSON SA et al.: Class I processing-defective Buricitt's lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. InainunoL (1997) 158:3619–3625.
  • ANDERSSON ML, STAM NJ, KLEIN G, PLOEGH HL, MASUCCI MG: Aberrant (1991) 47:544–550.
  • ROWE M, KHANNA R, JACOB CA et aL: Restoration of endogenous antigen processing in Burkitt’s lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur. J. Immunol. (1995) 25:1374–1384.
  • MASUCCI MG, TORSTEINDOTTIR S, COLOMBANI J et al.: Down-regulation ofclass I HLA antigens and of the Epstein-Barr virus-encoded latent membraneprotein in Buricitt lymphoma lines. Proc. Natl. Acad. Sci. USA (1987) 84:4567–4571.
  • KHANNA R, BURROWS SR, ARGAET V, MOSS DJ: Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int. Innnunol. (1994) 6:639–645.
  • STAEGE MS, LEE SP, FRISAN T et al.: MYC overexpression imposes a nonimmunogenic phenotype on Epstein-Barr virus-infected B cells. Proc. Natl. Acad. Sci. USA (2002) 99:4550–4555.
  • KHANNA R, BURROWS SR, KURILLA MG et al: Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. Exp. Med. (1992) 176:169–176.
  • MURRAY RJ, KURILLA MG,BROOKS JM et al.: Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. I Exp. Med. (1992) 176:157–168.
  • LEE SP, TIERNEY RJ, THOMAS WA, BROOKS JM, RICKINSON AB: Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. I kninunol. (1997) 158:3325–3334.
  • KHANNA R, BURROWS SR, NICHOLLS J, POULSEN LM: Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1):evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMPl-specific cytotoxic T lymphocytes. Eur: hannunol. (1998) 28:451–458.
  • TAN LC, GUDGEON N, ANNELS NE et al.: A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. kninunol. (1999) 162:1827–1835.
  • MEIJ P, LEEN A, RICKINSON AB et al.: Identification and prevalence of CD8(+) T-cell responses directed against Epstein-Barr virus-encoded latent membrane protein 1 and latent membrane protein 2. Int. J. Cancer (2002) 99:93–99.
  • BLAKE N, HAIGH T, SHAKMA G, CROOM-CARTER D, RICKINSON A: The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNAL j kninunol. (2000) 165:7078-7087.
  • •An important paper in which high frequencies of EBNA1-specific CD8+ T cells were detected in a number of donors. These responses are most likely generated by cross-priming of exogenous EBNA1 protein.
  • JANSSEN EM, LEMMENS EE,WOLFE T et al.: CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature (2003) 421:852–856.
  • SHEDLOCK DJ, SHEN H: Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science (2003) 300:337–339.
  • SUN JC, BE VAN MJ: Defective CD8 T cell memory following acute infection without CD4 T cell help. Science (2003) 300:339–342.
  • ZAJAC AJ, MURALI-KRISHNA K, BLATTMAN JN, AHMED R: Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Carr: Opin. hannunol. (1998) 10:444–449.
  • LEEN A, MEIJ P, REDCHENKO I et al.:Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J. Vim/. (2001) 75:8649–8659.
  • •The authors identified multipleHLA class II-restricted T cell epitopes in a number of EBV latent cycle proteins, suggesting a hierarchy of EBV-specific CD4+ T cell responses that is different to that previously defined for CD8+ T cell responses.
  • MUNZ C, BICKHAM KL,SUBKLEWE M et al.: Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNAl. I Exp. Med. (2000) 191:1649–1660.
  • •Describes EBNAl-specific CD4+ T cell lines that recognise latently infected LCLs. The authors suggest that recognition results from endogenous processing of the EBNA1 protein.
  • WANG RF: The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Inman& (2001) 22:269–276.
  • POLIC B, JONJIC S, PAVIC I et al.: Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection M viva Gen. Virol. (1996) 77(Pt 2):217–225.
  • PALUDAN C, BICKHAM K,NIKIFOROW S et al.: Epstein-Barr nuclear antigen 1-specific CD4(+) Thl cells kill Burkitt's lymphoma cells. I Immunol. (2002) 169:1593–1603.
  • NIKIFOROW S, BOTTOMLY K, MILLER G: CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cellproliferation.Virol. (2001)75:3740–3752.
  • KHANNA R, BURROWS SR, STEIGERWALD-MULLEN PM et al: Isolation of cytotoxic T lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein-Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology (1995) 214:633–637.
  • LECHLER R, AICHINGER G, LIGHTSTONE L: The endogenous pathway of MHC class II antigen presentation. Immunol. Rev (1996) 151:51–79.
  • AICHINGER G, KARLSSON L, JACKSON MR et al: Major histocompatibility complex class II-dependent unfolding, transport, and degradation of endogenous proteins.' Biol. Chem. (1997) 272:29127–29136.
  • LICH JD, ELLIOTT JF, BLUM JS: Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. Exp. Med. (2000) 191:1513–1524.
  • MUKHERJEE P, DANI A, BHATIA S et al.: Efficient presentation of both cytosolic and endogenous transmembrane protein antigens on MHC class II is dependent on cytoplasmic proteolysis. Immunol. (2001) 167:2632–2641.
  • NIMMERJAHN F, MILOSEVIC S, BEHRENDS U et al.: Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur. I Immunol. (2003) 33:1250–1259.
  • •This report elegantly describes a pathway by which cytosolic proteins can gain access to the HLA class II antigen processing pathway by autophagy.
  • PAPADOPOULOS EB, LADANYI M, EMANUEL D et al.: Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl. I Med. (1994) 330:1185–1191.
  • HESLOP HE, BRENNER MK, ROONEY CM: Donor T cells to treat EBV-associated lymphoma. N Engl. I Med. (1994) 331:679–680.
  • ROONEY CM, SMITH CA, NG CY et al: Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet (1995) 345:9–13.
  • ••The effective treatment of PTLD byadoptive T cell therapy represents an important proof of principal for therapeutic approaches based on EBV-specific T cells.
  • ROONEY CM, SMITH CA, NG CY et al: Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood (1998) 92:1549–1555.
  • ROONEY CM, LOFTIN SK,HOLLADAY MS et al.: Early identification of Epstein-Barr virus-associated post-transplantation lymphoproliferative disease. Br.! Haematol. (1995) 89:98–103.
  • GUSTAFSSON A, LEVITSKY V, ZOU JZet al.: Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood (2000) 95:807–814.
  • STARZL TE, NALESNIK MA,PORTER KA et al.: Reversibility of lymphomas and lymphoproliferative lesionsdeveloping under cyclosporin-steroid therapy. Lancet (1984) 1:583–587.
  • HAQUE T, AMLOT PL, HELLING N et al.: Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. Immunol. (1998) 160:6204–6209.
  • ORENTAS RJ, LEMAS MV, MULLIN MJ et al.: Feasibility of cellular adoptive immunotherapy for Epstein-Barr virus-associated lymphomas using haploidentical donors. Hematother: (1998) 7:257–261.
  • O'REILLY RJ, SMALL TN, PAPADOPOULOS E et al.: Adoptive immunotherapy for Epstein-Barr virus-associated lymphoproliferative disorders complicating marrow allografts. Springer &min. Immunopathol. (1998) 20:455–491.
  • KHANNA R, BELL S, SHERRITT M et al.: Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl. Acad. Sci. USA (1999) 96:10391–10396.
  • SHERRITT MA, BHARADWAJ M, BURROWS JM et al.: Reconstitution of the latent T-lymphocyte response to Epstein-Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation (2003) 75:1556–1560.
  • METES D, STORKUS W, ZEEVI A et al: Ex vivo generation of effective Epstein-Barr virus (EBV)-specific CD8+ cytotoxic T lymphocytes from the peripheral blood of immunocompetent Epstein Barr virus-seronegative individuals. Transplantation (2000) 70:1507–1515.
  • CHESON BD: Rituximab: clinical development and future directions. Expert Opin. Biol. Ther: (2002) 2:97–110.
  • MILPIED N, VASSEUR B, PARQUET N et al.: Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann. Oncol. (2000) 11\(Suppl. 1):113–116.
  • FAYE A, QUARTIER P, REGUERRE Y et al.: Chimaeric anti-CD20 monoclonal antibody (rituximab) in post-transplant B-lymphoproliferative disorder following stem cell transplantation in children. Br. Haematol. (2001) 115:112–118.
  • EKSTRAND BC, LUCAS JB,HORWITZ SM et al: Rituximab in lymphocyte-predominant Hodgkin disease:results of a Phase II trial. Blood (2003) 101:4285–4289.
  • COHEN Y, AMIR G,RACHMILEWITZ EA, POLLIACK A: Sustained complete remission following a combination of very low intensity chemotherapy with rituximab in an elderly patient with Burkitt's lymphoma. Haematologica (2002) 87:ELT04.
  • VERSCHUUREN EA, STEVENS SJ, VAN IMHOFF GW et al.: Treatment of posttransplant lymphoproliferative disease with rituximab: the remission, the relapse, and the complication. Transplantation (2002) 73:100–104.
  • MASUCCI MG,CONTRERAS-SALAZAR B, RAGNAR E et al.: 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael. Vim]. (1989) 63:3135–3141.
  • KHANNA R, COOPER L, KIENZLE N et al.: Engagement of CD40 antigen with soluble CD40 ligand up-regulates peptide transporter expression and restores endogenous processing function in Burkitt's lymphoma cells. J. Inununol. (1997) 159:5782–5785.
  • FRISAN T, DONATI D, CERVENAK L et al.: CD40 cross-linking enhances the immunogenicity of Burkitt's-lymphoma cell lines. Int. J. Cancer (1999) 83:772–779.
  • ONG KW, WILSON AD, HIRST TR, MORGAN AJ: The B subunit of Escherichia coli heat-labile enterotoxin enhances CD8+ cytotoxic-T-lymphocyte killing of Epstein-Barr virus-infected cell lines." Vim]. (2003) 77:4298–4305.
  • SING AP, AMBINDER RF, HONG DJ et al.: Isolation of Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes that lyse Reed-Sternberg cells: implications for immune-mediated therapy of EBV+ Hodgkin's disease. Blood (1997) 89:1978–1986.
  • CHAPMAN AL, RICKINSON AB, THOMAS WA et al.: Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin's disease patients: implications for a T-cell-based therapy. Cancer Res. (2001) 61:6219–6226.
  • CHAN SH, CHEW TS, GOH EH, SIMONS MJ, SHANMUGARATNAM K: Impaired general cell-mediated immune functions in vivo and in vitroin patientswith nasopharyngeal carcinoma. Int. Cancer (1976) 18:139–144.
  • CHAN SH, CHEW TS: Lack of regression in Epstein-Barr virus infected leucocyte cultures of nasopharyngeal carcinoma patients. Lancet (1981) 2:1353.
  • MOSS DJ, CHAN SH, BURROWS SR et al.: Epstein-Barr virus specificT-cell response in nasopharyngeal carcinoma patients. Int. J. Cancer (1983) 32:301–305.
  • SLIVNICK DJ, ELLIS TM,NAWROCKI JF, FISHER RI: The impact of Hodgkin's disease on the immune system. Semin. Oncol (1990) 17:673–682.
  • ROSKROW MA, SUZUKI N, GAN Y et al.: Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood (1998) 91:2925–2934.
  • CHUA D, HUANG J, ZHENG B et al: Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. hat. J. Cancer (2001) 94:73–80.
  • BANCHEREAU J, STEINMAN RM: Dendritic cells and the control of immunity. Nature (1998) 392:245–252.
  • RED CHENKO IV, RICKINSON AB: Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J. Vim]. (1999) 73:334–342.
  • SU Z, PELUSO MV, RAFFEGERST SH, SCHENDEL DJ, ROSKROW MA: The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. Eur. Inonunol. (2001) 31:947–958.
  • GOTTSCHALK S, EDWARDS OL, SILI U et al.: Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood (2003) 101: 1905-1912.
  • RANIERI E, HERR W, GAMBOTTO A et al.: Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination. J. Vim]. (1999) 73:10416–10425.
  • GAHN B, SILLER-LOPEZ F, PIROOZ AD et al.: Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: a potential treatment strategy for Epstein-Barr virus-positive Hodgkin'slymphoma. Int. J. Cancer (2001) 93:706–713.
  • DURAISWAMY J, SHERRITT M, THOMSON S et al: Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood(2003) 101:3150–3156.
  • LIN CL, LO WF, LEE TH et al: Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res. (2002) 62:6952–6958.
  • •In this study, CD8+ T cell responses were boosted following DC vaccination, with evidence of clinical responses that were coincident with the development of LMP2-specific T cell responses.
  • TAYLOR GS, HAIGH T, GUDGEON N et al.: Dual stimulation of Epstein-Barr virus (EBV) specific CD4+ and CD8+ T cell responses by a chimaeric antigen construct: a potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. Virol (2004) (In Press).
  • MAHNEL H, MAYR A: Experiences with immunization against orthopox viruses of humans and animals using vaccine strain MVA. Berl. Munch. Tierarzil Wochenschr. (1994) 107:253–256.
  • MCCONKEY SJ, REECE WH, MOORTHY VS et al.: Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. (2003) 9:729–735.
  • •This paper describes a clinical trial optimising the prime-boost vaccination regime. After DNA priming, a single dose of MVA is sufficient to substantially increase T cell responses.
  • SCHNEIDER J, GILBERT SC, BLANCHARD TJ et al.: Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. (1998) 4:397–402.
  • KOUTSKY LA, AULT KA,WHEELER CM et al.: A controlled trial of a human papillomavirus type 16 vaccine. N Engl. J. Med. (2002) 347:1645–1651.
  • CHEN DS, HSU NH, SUNG JL et al: A mass vaccination program in Taiwan against hepatitis B virus infection in infantsof hepatitis B surface antigen-carrier mothers. JAMA (1987) 257:2597–2603.
  • HSU HM, LU CE LEE SC, LIN SR, CHEN DS: Seroepidemiologic survey for hepatitis B virus infection in Taiwan: the effect of hepatitis B mass immunization. J. Infect. Dis. (1999) 179:367–370.
  • KAO JH, CHEN DS: Global control of hepatitis B virus infection. Lancet Infect. Dis. (2002) 2:395–403.
  • SUN Z, MING L, ZHU X, LU J: Prevention and control of hepatitis B in China. J. Med. Virol (2002) 67:447–450.
  • THORLEY-LAWSON DA, POODRY CA: Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. Vim/. (1982) 43:730–736.
  • EPSTEIN MA, MORGAN AJ,FINERTY S, RANDLE BJ,KIRKWOOD JK: Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature (1985) 318:287–289.
  • MORGAN AJ, FINERTY S,LOVGREN K, SCULLION FT, MOREIN B: Prevention of Epstein-Barr (EB) virus-induced lymphoma in cottontop tamarins by vaccination with the EB virus envelope glycoprotein gp340 incorporated into immune-stimulating complexes. Gen. Virol (1988) 69(Pt 8):2093–2096.
  • MORGAN AJ, ALLISON AC, FINERTY S et al.: Validation of a first-generation Epstein-Barr virus vaccine preparation suitable for human use. 1 Med. Virol (1989) 29:74–78.
  • GU SY, HUANG TM, RUAN L et al: First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand (1995) 84:171–177.
  • NO AUTHORS LISTED: The Jordan Report 20th Anniversary.: Accelerated Development of Vaccines 2002 National Institute of Allergy and Infectious Disease, Bethesda, Maryland, USA (2002).
  • MOGHADDAM A, ROSENZWEIG M, LEE-PARRITZ D et al.: An animal modelfor acute and persistent Epstein-Barr virus infection. Science (1997) 276:2030–2033.
  • MOSS DJ, SCHMIDT C, ELLIOTT S et al.: Strategies involved in developing an effective vaccine for EBV-associated diseases. Adv. Cancer Res. (1996) 69:213–245.
  • TSAI ST, FANG SY, JIN YT, SU IJ, YANG BC: Analysis of the expression of Fas-L in nasopharyngeal carcinoma tissues. Oral °flea (1999) 35:421–424.
  • SKINNIDER BE MAK TW: The role of cytokines in classical Hodgkin lymphoma. Blood (2002) 99:4283–4297.
  • DUKERS DF, MEIJ P, VERVOORT MB et al.: Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. Immunol (2000) 165:663–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.