184
Views
38
CrossRef citations to date
0
Altmetric
Review

Peptide-based vaccines for cancer immunotherapy

, , &
Pages 181-198 | Published online: 03 Mar 2005

Bibliography

  • RIBAS A, BUTTERFIELD LH, GLASPY JA, ECONOMOU JS: Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol. (2003) 21:2415–2432.
  • SALIT RB, KAST WM, VELDERS MP: Ins and outs of clinical trials with peptidebased vaccines. Front. Biosci. (2002) 7:e204–e213.
  • JANEWAY C, TRAVERS P, CAPRA JD, WALPORT MJ: Immunobiology: The Immune System in Health and Disease. Janeway C, Travers P, Capra JD, Walport MJ (Eds), Garland publishing company, New York and London (1997).
  • BANCHEREAU J, STEINMAN RM: Dendritic cells and the control of immunity. Nature (1998) 392:245–252.
  • LE POOLE IC, BOMMIASAMY H, KAST WM: Recent progress in tumour vaccine development. Expert Opin. Investig. Drugs (2003) 12:971–981.
  • KNUTSON KL, SCHIFFMAN K, DISIS ML: Immunization with a HER-2/ neu helper peptide vaccine generates HER- 2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. (2001) 107:477–484.
  • •• Demonstrates generation of long-lasting CTL responses by vaccination with HER-2/neu helper T cell epitopes containing putative HLA-A2 MHC I epitopes within the helper peptides.
  • DISIS ML: Clinical trials of HER-2/neu peptide-based vaccines. In: Peptide-Based Cancer Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):143–154.
  • DISIS ML, GRABSTEIN KH, SLEATH PR, CHEEVER MA: Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin. Cancer Res. (1999) 5:1289–1297.
  • • Provides a demonstration of effective epitope or determinant spreading, whereby vaccination with peptides generated from the ECD resulted in immunity to ICD peptides and full-length HER-2/neu protein.
  • DISIS ML, SCHIFFMAN K, GOOLEY TA et al.: Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin. Cancer Res. (2000) 6:1347–1350.
  • KNUTSON KL, SCHIFFMAN K, CHEEVER MA, DISIS ML: Immunization of cancer patients with a HER-2/neu, HLAA2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin. Cancer Res. (2002) 8:1014–1018.
  • DISIS ML, GOOLEY TA, RINN K et al.: Generation of T-cell immunity to the HER- 2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J. Clin. Oncol. (2002) 20:2624–2632.
  • BROSSART P, WIRTHS S, STUHLER G et al.: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood (2000) 96:3102–3108.
  • PEOPLES GE, GOEDEGEBUURE PS, SMITH R et al.: Breast and ovarian cancerspecific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc. Natl. Acad. Sci. USA (1995) 92:432–436.
  • FISK B, BLEVINS TL, WHARTON JT, IOANNIDES CG: Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med. (1995) 181:2109–2117.
  • BROSSART P, HEINRICH KS, STUHLER G et al.: Identification of HLAA2- restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood (1999) 93:4309–4317.
  • KONO K, TAKAHASHI A, SUGAI H et al.: Dendritic cells pulsed with HER-2/ neu-derived peptides can induce specific Tcell responses in patients with gastric cancer. Clin. Cancer Res. (2002) 8:3394–3400.
  • DISIS ML, RINN K, KNUTSON KL et al.: Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neuoverexpressing cancers. Blood (2002) 99:2845–2850.
  • VISSERS JLM, DE VRIES I, JOLANDA M, OOSTERWIJK E, FIGDOR CG, ADEMA GJ: GP100 and GP250: towards specific immunotherapy employing dendritic cells in melanoma and renal cell Carcinoma. In: Peptide-Based Cancer Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):200–214.
  • DAVIS ID, LOTZE MT: Melanoma peptide clinical trials. In: Peptide-Based Cancer Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):215–236.
  • SCHEIBENBOGEN C, SCHMITTEL A, KEILHOLZ U et al.: Phase II trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother. (2000) 23:275–281.
  • SCHEIBENBOGEN C, SCHADENDORF D, BECHRAKIS NE et al.: Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the Tcell response to vaccination with tyrosinase peptides. Int. J. Cancer (2003) 104:188–194.
  • BETTINOTTI MP, PANELLI MC, RUPPE E et al.: Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170-178. Int. J. Cancer (2003) 105:210–216.
  • SMITH JW 2ND, WALKER EB, FOX BA et al.: Adjuvant immunization of HLA-A2- positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. (2003) 21:1562–1573.
  • •• Demonstrates the use of anchor-modified peptides to enhance peptide-specific CTL activity in melanoma patients.
  • SCHAED SG, KLIMEK VM, PANAGEAS KS et al.: T-cell responses against tyrosinase 368-376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund's adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin. Cancer Res. (2002) 8:967–972.
  • SLINGLUFF CL JR, YAMSHCHIKOV G, NEESE P et al.: Phase I trial of a melanoma vaccine with gp100(280-288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin. Cancer Res. (2001) 7:3012–3024.
  • LAU R, WANG F, JEFFERY G et al.: Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J. Immunother. (2001) 24:66–78.
  • PANELLI MC, WUNDERLICH J, JEFFRIES J et al.: Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J. Immunother. (2000) 23:487–498.
  • SADANAGA N, NAGASHIMA H, MASHINO K et al.: Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin. Cancer Res. (2001) 7:2277–2284.
  • TOUNGOUZ M, LIBIN M, BULTE F et al.: Transient expansion of peptidespecific lymphocytes producing IFNgamma after vaccination with dendritic cells pulsed with MAGE peptides in patients with mage-A1/A3-positive tumors. J. Leukoc. Biol. (2001) 69:937–943.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccination with mage-3A1 peptidepulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. (1999) 190:1669–1678.
  • MACKENSEN A, HERBST B, CHEN JL et al.: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer (2000) 86:385–392.
  • MITCHELL MS, DARRAH D, YEUNG D et al.: Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J. Clin. Oncol. (2002) 20:1075–1086.
  • LEE P, WANG F, KUNIYOSHI J et al.: Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol. (2001) 19:3836–3847.
  • WEBER J, SONDAK VK, SCOTLAND R et al.: Granulocyte-macrophage-colonystimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer (2003) 97:186–200.
  • BOSCH FX, MANOS MM, MUNOZ N et al.: Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J. Natl. Cancer Inst. (1995) 87:796–802.
  • HOWLEY P: Papillomavirinae: the viruses and their replication. In: Fields Virology. Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (Eds), Lippincott- Raven, Philadelphia (1996):2045–2076.
  • PALEFSKY JM, HOLLY EA: Molecular virology and epidemiology of human papillomavirus and cervical cancer. Cancer Epidemiol. Biomarkers Prev. (1995) 4:415–428.
  • FRAZER I: Vaccines for papillomavirus infection. Virus Res. (2002) 89:271–274.
  • SCHWARZ E, FREESE UK, GISSMANN L et al.: Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature (1985) 314:111–114.
  • KAST WM, BRANDT RM, DRIJFHOUT JW, MELIEF CJ: Human leukocyte antigen-A2.1 restricted candidate cytotoxic T lymphocyte epitopes of human papillomavirus type 16 E6 and E7 proteins identified by using the processing-defective human cell line T2. J. Immunother. (1993) 14:115–120.
  • RESSING ME, SETTE A, BRANDT RM et al.: Human CTL epitopes encoded by human papillomavirus Type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201- binding peptides. J. Immunol. (1995) 154:5934–5943.
  • ALEXANDER M, SALGALLER ML, CELIS E et al.: Generation of tumorspecific cytolytic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope. Am. J. Obstet. Gynecol. (1996) 175:1586–1593.
  • MUDERSPACH L, WILCZYNSKI S, ROMAN L et al.: A Phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res. (2000) 6:3406–3416.
  • STELLER MA, GURSKI KJ, MURAKAMI M et al.: Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res. (1998) 4:2103–2109.
  • VAN DRIEL WJ, RESSING ME, KENTER GG et al.: Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a Phase I-II trial. Eur. J. Cancer (1999) 35:946–952.
  • VELDERS MP, WEIJZEN S, EIBEN GL et al.: Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol. (2001) 166:5366–5373.
  • KLENCKE B, MATIJEVIC M, URBAN RG et al.: Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res. (2002) 8:1028–1037.
  • SHEETS EE, URBAN RG, CRUM CP et al.: Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am. J. Obstet. Gynecol. (2003) 188:916–926.
  • • Utilised mini-gene construct to deliver overlapping HPV-16 E7 CTL epitopes, resulting in the formation of peptide-specific CTL reactivity and local IgA antibody responses to different components of the virus.
  • SCHLOM J: Carcinoembyronic antigen (CEA) peptides and vaccines for carcinoma. In: Peptide-Based Cancer Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):90–105.
  • MARSHALL J: Carcinoembryonic antigenbased vaccines. Semin. Oncol. (2003) 30:30–36.
  • MORSE MA, DENG Y, COLEMAN D et al.: A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin. Cancer Res. (1999) 5:1331–1338.
  • SCHOTT M, SEISSLER J, LETTMANN M et al.: Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J. Clin. Endocrinol. Metab. (2001) 86:4965–4969.
  • ARLEN P, TSANG KY, MARSHALL JL et al.: The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide versus recombinant poxvirus vaccines. Cancer Immunol. Immunother. (2000) 49:517–529.
  • FONG L, HOU Y, RIVAS A et al.: Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. USA (2001) 98:8809–8814.
  • • Demonstrates the use of a CEA-derived heteroclitic peptide to enhance peptide-specific CTL activity.
  • GOYDOS JS, ELDER E, WHITESIDE TL, FINN OJ, LOTZE MT: A Phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. (1996) 63:298–304.
  • APOSTOLOPOULOS V, PIETERSZ GA, MCKENZIE IFC: Studies of MUC1 Peptides. In: Peptide-Based Cancer Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):106–120.
  • MUSSELLI C, RAGUPATHI G, GILEWSKI T et al.: Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int. J. Cancer (2002) 97:660–667.
  • KARANIKAS V, HWANG LA, PEARSON J et al.: Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. (1997) 100:2783–2792.
  • KARANIKAS V, THYNNE G, MITCHELL P et al.: Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J. Immunother. (2001) 24:172–183.
  • GAJEWSKI TF, FALLARINO F, ASHIKARI A, SHERMAN M: Immunization of HLA-A2+ melanoma patients with MAGE-3 or MelanA peptidepulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin 12. Clin. Cancer Res. (2001) 7:895s–901s.
  • ZWAVELING S, FERREIRA MOTA SC, NOUTA J et al.: Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. (2002) 169:350–358.
  • COULTER A, WONG TY, DRANE D et al.: Studies on experimental adjuvanted influenza vaccines: comparison of immune stimulating complexes (Iscoms) and oil-inwater vaccines. Vaccine (1998) 16:1243–1253.
  • WEBER JS: Cancer peptide vaccines in clinical trials. In: Peptide-Based Vaccines. Kast WM (Ed.), Landes Bioscience, Georgetown, USA (2000):72–89.
  • SADELAIN M, RIVIERE I, BRENTJENS R: Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer (2003) 3:35–45.
  • KEILHOLZ U, WEBER J, FINKE JH et al.: Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J. Immunother. (2002) 25:97–138.
  • LYERLY HK: Quantitating cellular immune responses to cancer vaccines. Semin. Oncol. (2003) 30:9–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.