55
Views
18
CrossRef citations to date
0
Altmetric
Review

Radioimmunotherapy with engineered antibodies

&
Pages 217-231 | Published online: 03 Mar 2005

Bibliography

  • KOHLER G, MILSTEIN C: Continuouscultures of fused cells secreting antibody of predefined specificity. Nature (1975) 256:495–497.
  • HOLECHEK MJ: Glomerular filtration: an overview. Nephrol. Nurs. J. (2003) 30:285-290; quiz 291–282.
  • SCHIER R, MCCALL A, ADAMS GP et al.: Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. (1996) 263:551–567.
  • SCHIER R, BYE J, APELL G et al: Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection.' Ma Biol. (1996) 255:28–43.
  • GHETIE V, WARD ES: Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Ann. Rev. Immunol. (2000) 18:739–766.
  • BOULIANNE GL, HOZUMI N, SHULMAN MJ: Production of functional chimaeric mouse/human antibody. Nature (1984) 312:643–646.
  • MORRISON SL, JOHNSON MJ, HERZENBERG LA, OI VT: Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA (1984) 81:6851–6855.
  • JONES PT, DEAR PH, FOOTE J, NEUBERGER MS, WINTER G: Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature (1986) 321:522–525.
  • KORTT AA, LAH M, ODDIE GW et al.: Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five- and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Eng. (1997) 10:423–433.
  • HUSTON JS, LEVINSON D, MUDGETT-HUNTER M et al.: Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA (1988) 85:5879–5883.
  • BIRD RE, HARDMAN KD, JACOBSON JW et al.: Single-chain antigen-binding proteins. Science (1988) 242:423–426.
  • MARKS JD, HOOGENBOOM HR, BONNERT TP, MCCAFFERTY J, GRIFFITHS AD, WINTER G: By-passing immunization. Human antibodies from V-gene libraries displayed on phage. Mol. Biol. (1991) 222:581–597.
  • ADAMS GP, MCCARTNEY JE, TAI MSet al.: Highly specific in vivotumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. (1993) 53:4026–4034.
  • BERESFORD GW, PAVLINKOVA G, BOOTH BJ, BATRA SK, COLCHER D: Binding characteristics and tumor targeting of a covalently linked divalent CC49 single-chain antibody. Int. J. Cancer (1999) 81:911–917.
  • ADAMS GP, ROBINSON MK, HORAK E et al: Anti-HER2/HER3 bispecific single-chain Fv molecules for cancer detection and therapy. Proc. Am. Assoc. Cancer Res. (2003) 44:1327 (Abstract #R5784).
  • WU AM, YAZAKI PJ: Designer genes: recombinant antibody fragments for biological imaging. QJ Nucl. Med. (2000) 44:268–283.
  • LU D, SHEN J, VIL MD et al: Tailoring M vitro selection for a picomolar-affinity human antibody directed against VEGF receptor 2 for enhanced neutralizing activity. J. Biol. Chem. (2003) 278(44):43496–43507.
  • DAVIES CDE L, BERK DA, PLUEN A, JAIN RK: Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus M vitro as spheroids reveals the role of host stromal cells. Br. J. Cancer (2002) 86:1639–1644.
  • HALIN C, NIESNER U, VILLANI ME, ZARDI L, NERI D: Tumor-targeting properties of antibody-vascular endothelial growth factor fusion proteins. Int. J. Cancer (2002) 102:109–116.
  • CARNEMOLLA B, BORSI L, BALZA E et al.: Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood (2002) 99: 1659-1665.
  • HALIN C, GAFNER V, VILLANI ME et al.: Synergistic therapeutic effects of atumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res. (2003) 63:3202–3210.
  • SMALLSHAW JE, GHETIE V, RIZO J et al.: Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol. (2003) 21:387–391.
  • ••Identifies toxin sequences associated withVLS - these sequences could be used to enhance extravasation of mAbs.
  • WOCHNER RD, STROBER W, WALDMANN TA. The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J. Exp. Med. (1967) 126:207–221.
  • LEONG SR, DEFORGE L, PRESTA L et al.: Adapting pharmacokinetic properties of a humanized anti-interleukin-8 antibody for therapeutic applications using site-specific pegylation. Cytokine (2001) 16:106–119.
  • LU ZR, SHIAH JG, KOPECKOVA P, KOPECEK J: Preparation and biological evaluation of polymerizable antibody Fab' fragment targeted polymeric drug delivery system. J. Control. Release (2001) 74:263–268.
  • DENNIS MS, ZHANG M, MENG YG et al.: Albumin binding as a general strategy for improving the pharmacokinetics of proteins. " Biol. Chem. (2002) 277:35035–35043.
  • •Engineering albumin binding sites into antibody fragments to prolong serum half-life.
  • ADAMS GP, SHALLER C, GARMESTANI K, TESFAYE A, WALDMANN TA, BRECHBIEL MW: Alpha-emitting radioisotopes conjugated to anti-HER2/neu diabodies for the radioimmunotherapy of solid tumors. Paper presented at the American Chemical Socieo,. Di vision of Nuclear Chemistry and Technology New Orleans, LA, USA (2003).
  • BEHR TM, SHARKEY RM,JUWEID ME et al: Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res. (1995) 55:3825–3834.
  • BEHR TM, BEHE M, STABIN MG et al:High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 9°Y-labeled C017-1A Fab' fragments in a human colonic cancer model. Cancer Res. (1999) 59:2635–2643.
  • TARBURTON JP, HALPERN SE, HAGAN PL et al.: Effect of acetylation on monoclonal antibody ZCE-025 Fab': distribution in normal and bearing-bearing mice. J. Biol Response Mod. (1990) 9:221–230.
  • PAVLINKOVA G, BERESFORD G, BOOTH BJ, BATRA SK, COLCHER D: Charge-modified single chain antibody constructs of monoclonal antibody CC49: generation, characterization, pharmacokinetics, and biodistribution analysis. Nucl. Med. Biol. (1999) 26:27–34.
  • HOWELL RW, RAO DV, SASTRY KS: Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med. Phys. (1989) 16:66–74.
  • HUMM JL, COBB LM: Nonuniformity of tumour dose in radioimmunotherapy. J. Nucl. Med. (1990) 31:75–83.
  • NIKJ00 H, O'NEILL P, WILSON WE, GOODHEAD DT: Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res. (2001) 156:577–583.
  • ZALUTSKY MR, GARG PK,FRIEDMAN HS, BIGNER DD: Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide Astatine-211: preservation of immunoreactivity and in vivo localizing capacity. Proc. Natl. Acad. Sci. USA (1989) 86:7149–7153.
  • ADAMS GP, SHALLER CC,CHAPPELL LL et al.: Delivery of the alpha-emitting radioisotope Bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl. Med. Biol. (2000) 27:339–346.
  • MCDEVITT MR, MA D, LAI LT et al.:Tumour therapy with targeted atomic nanogenerators. Science (2001) 294:1537–1540.
  • WISEMAN GA, LEIGH B, ERWIN WD et al.: Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer (2002) 94:1349–1357.
  • WILLIAMS LE, LIU A WU AM et al.: Figures of merit (F0Ms) for imaging and therapy using monoclonal antibodies. Med. Phys. (1995) 22:2025–2027.
  • STEIN R, GOVINDAN SV, MATTES MJ et al.: Improved iodine radiolabels formonoclonal antibody therapy. Cancer Res. (2003) 63:111–118.
  • •Indirect radioiodination strategy to decrease dehalogenation.
  • ALCINDOR T, WITZIG TE: Radioimmunotherapy with Yttrium-90 ibritumomab titixetan for patients with relapsed CD20+ B-cell non-Hodgkin's lymphoma. Cirri: Treat. Options Oncol (2002) 3:275–282.
  • LEONARD JP, SIEGEL JA,GOLDSMITH SJ: Comparative physical and pharmacologic characteristics of Iodine-131 and Yttrium-90: implications for radioimmunotherapy for patients with non-Hodgkin's lymphoma. Cancer Invest. (2003) 21:241–252.
  • PRESS OW, RASEY J: Principles of radioimmunotherapy for hematologists and oncologists. Semin. Oncol (2000) 27:62–73.
  • KINUYA S, YOKOYAMA K, KOBAYASHI K et al.: Experimental radioimmunotherapy with 186Re-MAG3-A7 anti-colorectal cancer monoclonal antibody: comparison with 131I counterpart. Ann. NucL Med. (2001) 15:199–202.
  • ADAMS GP, SCHIER R, MCCALL AM et al.: High affinity restricts the localization and tumour penetration of single-chain fv antibody molecules. Cancer Res. (2001) 61:4750–4755.
  • •Extremely high affinity limits tumour penetration of antibody fragments.
  • GRAFF CP, WITTRUP KD: Theoretical analysis of antibody targeting of tumour spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res. (2003) 63:1288–1296.
  • ADAMS GP, SCHIER R, MCCALL AM et al.: Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer (1998) 77:1405–1412.
  • ADAMS GP: Effectiveradioimmunotherapy of solid tumors using anti-HER2/neu diabodies conjugated to alpha particle and beta particle emitting radioisotopes. Presented at the Ninth Conference on Cancer Therapy with Antibodies and Immunoconjugates, Princeton, New Jersey, USA. Cancer Biother: Radiopharm. (2002) 17:481.
  • YAZAKI PJ, WU AM, TSAI SW et al.: Tumour targeting of radiometal labelled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison toradioiodinated fragments. Bioconjug. Chem. (2001) 12:220–228.
  • •Identifies differential normal organ retention patterns for radiometal-labelled diabodies and minibodies.
  • HU S, SHIVELY L, RAUBITSCHEK A et al.: Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. (1996) 56:3055–3061.
  • GOEL A, COLCHER D,BARANOWSKA-KORTYLEWICZ J et al.: Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res. (2000) 60:6964–6971.
  • SLAVIN-CHIORINI DC,KASHMIRI SV, SCHLOM J et al.: Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. (1995) 55:5957s–5967s.
  • SLAVIN-CHIORINI DC,KASHMIRI SV, LEE HS et al.: A CDR-grafted (humanized) domain-deleted antitumor antibody. Cancer Biother. Radiopharm. (1997) 12:305–316.
  • FERRARA N: Role of vascular endothelialgrowth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol (2002) 29:10–14.
  • KENNEL SJ, LANKFORD T,DAVERN S et al.: Therapy of rat tracheal carcinoma IC-12 in SCID mice: vascular targeting with [213Bi]-MAb TES-23. Puri Cancer (2002) 38:1278–1287.
  • REARDON DA, AKABANI G, COLEMAN RE et al.: Phase II trial of murine 131I-labeled anti-tenascin monoclonal antibody 8106 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. Clin. OncoL (2002) 20:1389–1397.
  • AXWORTHY DB, RENO JM, HYLARIDES MD et al.: Cure of human carcinoma xenografts by a single dose of pretargeted Yttrium-90 with negligible toxicity. Proc. NatL Acad. ScL USA (2000) 97:1802–1807.
  • BARBET J, KRAEBER-BODERE F, VUILLEZ JP, GAUTHEROT E, ROUVIER E, CHATAL JF: Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother. Radiopharm. (1999) 14:153–166.
  • ••Divalent PRIT ligand enhances bindingavidity and increases tumour localisation.
  • CHANG CH, SHARKEY RM, ROSSI EA et al.: Molecular advances in pretargeting radioimmunotherapy with bispecific antibodies. Ma Cancer The]: (2002) 1:553–563.
  • SCHULTZ J, LIN Y, SANDERSON J et al.: A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res. (2000) 60:6663–6669.
  • BOERMAN OC, KRANENBORG MH, OOSTERWIJK E et al.: Pretargeting of renal cell carcinoma: improved tumor targeting with a bivalent chelate. Cancer Res. (1999) 59:4400–4405.
  • O'DONNELL RT, DENARDO SJ, MIERS LA et al.: Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 9°yttrium-DOTA-peptide-ChL6. Prostate (2002) 50:27–37.
  • •Effective combination of RAIT with radiosensitising chemotherapeutic agents.
  • KRAEBER-BODERE F, SAI-MAUREL C, CAMPION L et al.: Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Ma Cancer Ther. (2002) 1:267–274.
  • •Effective combination of PRIT with radiosensitising chemotherapeutic agents.
  • PEDLEY RB, HILL SA, BOXER GM et al: Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-0-phosphate. Cancer Res. (2001) 61:4716–4722.
  • ••Demonstrated the complementary natureof RAIT and antivascular agents.
  • KINUYA S, KAWASHIMA A,YOKOYAMA K et al.: Cooperative effect of radioimmunotherapy and antiangiogenic therapy with thalidomide in human cancer xenografts. Nucl. Med. (2002) 43:1084–1089.
  • WITZIG TE, WHITE CA, GORDON LI et al.: Safety of Yttrium-90 ibritumomab titixetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkin's lymphoma. j. Clin. Oncol (2003) 21:1263–1270.
  • ••Effective treatment of NHL patients withMY-conjugated mAb.
  • KAMINSKI MS, ZELENETZ AD, PRESS OW et al.: Pivotal study of iodine 1–131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas.Clin. Oncol (2001) 19:3918–3928.
  • ••Effective treatment of NHL patients with131I-conjugated mAb.
  • WHITE CA, WEAVER RL,GRILLO-LOPEZ AJ: Antibody-targeted immunotherapy for treatment of malignancy. Ann. Rev Med. (2001) 52:125–145.
  • HADAR G, SHARKEY RM, BURTON J et al.: Phase I radioimmunotherapy trial with Iodine-131-labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin. Colorectal Cancer (2002) 2:31–42.
  • BANDER NH, NANUS DM, MILOWSKY MI et al.: Phase I radioimmunotherapy (PIT) trial of humanized monoclonal (mAb) antibody J591 to the extracellular domain of prostate specific membrane antigen (PSMAext) radiolabeled with 177leutetium (1771_,u) in advanced prostate cancer (Pca). Proc. Am. Soc. Clin. Oncol (2003):401 (Abstract 1612).
  • WONG, JYC, CHU DZ,YAMAUCHI DM et al.: A Phase I radioimmunotherapy trial evaluating 9°yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin. Cancer Res. (2000) 6:3855–3863.
  • BEHR TM, LIERSCH T, GREINER-BECHERT L et al.: Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer (2002) 94:1373–1381.
  • CASEY JL, NAPIER MP, KING DJ et al.: Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical Phase I/II study. Br. J. Cancer (2002) 86:1401–1410.
  • FORERO-TORRES A, KHAZAELI MB, CARPENTER M et al.: Phase I trial of intravenous 131I-HuCC49 delta CH2 in patients with metastatic colorectal carcinoma. Proc. Am. Soc. Clin. Oncol (2003):182 (Abstract 730).
  • •First clinical trial of radiolabelled domain-deleted mAb.
  • WONG JY, CHU D, WILLIAMS LE et al.:Tumor imaging with 123I-labeled 80 kD engineered anti- CEA antibody fragment (cT84.66 Minibody) in patients with colorectal cancer. J. Nucl. Med. Sapp]. (2003):402P (Abstract #1433).
  • •First clinical trial with radiolabelled minibody.
  • SHEN S, FORERO A, LOBULGIO AF et al.: Patient-specific radiation dosimetry of pretarget radioimmunotherapy using CC-49 fusion protein in patients with gastrointestinal malignancies. J. Nucl. Med. Sapp]. (2003):151P (Abstract #494).
  • LEICHNER PK, AKABANI G, COLCHER D et al.: Patient-specific dosimetry of Indium-111- and Yttrium-90-labeled monoclonal antibody CC49. J. Nucl. Med. (1997) 38:512–516.
  • WEIDEN PL, BREITZ HB: Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL). Crit. Rev Oncol Hematol (2001) 40:37–51.
  • HUSTON JS, GEORGE AJ, ADAMS GP et al.: Single-chain Fv radioimmunotargeting. Qj Nucl. Med. (1996) 40:320–333.
  • KANG N, HAMILTON S, ODILI J, WILSON G, KUPSCH J: In vivotargeting of malignant melanoma by 125Iodine- and Technetium-labeled single-chain Fv fragments against high molecular weight melanoma-associated antigen. Clin. Cancer Res. (2000) 6:4921–4931.
  • FANG J, JIN HB, SONG JD: Construction, expression and tumor targeting of a single-chain Fv against human colorectal carcinoma. World J. Castroenterol (2003) 9:726–730.
  • WEINER LM, HOUSTON LL, HOUSTON JC et al.: Improving the tumor-selective delivery of single-chain Fv molecules. Tumor Target. (1995):51–60.
  • MILENIC DE, YOKOTA T,FILPULA DR et al: Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. (1991) 51:6363–6371.
  • SLAVIN-CHIORINI DC,HORAN HAND PH, KASHMIRI SV, CALVO B, ZAREMBA S, SCHLOM J: Biologic properties of a CH2 domain-deleted recombinant immunoglobulin. Int. Cancer (1993) 53:97–103.
  • ZWEIT J: Radionuclides and carrier molecules for therapy. Phys. Med. Biol. (1996) 41:1905–1914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.