104
Views
12
CrossRef citations to date
0
Altmetric
Review

Stem cell bioengineering for regenerative medicine

Pages 631-644 | Published online: 03 Mar 2005

Bibliography

  • BLAU HM, BRAZELTON TR, WEIMANN JM: The evolving concept of a stem cell: entity or function? Cell (2001) 105(7):829–841.
  • ZANDSTRA PW, NAGY A: Stem cell bioengineering. Ann. Rev. Biomed. Eng. (2001) 3:275–305.
  • PETIT-ZEMAN S: Regenerative medicine. Nat. BiotechnoL (2001) 19(3):201–206.
  • LOEBEL DAF, WATSON CM, DE YOUNG RA, TAM PPL: Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev. Biol. (2003) 264(1):1–14.
  • ZON LI: Self-renewal versus differentiation, a job for the mighty morphogens. Nat. ImmunoL (2001) 2:142–143.
  • SMITH AG, HEATH JK, DONALDSON DD et al.: Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature (1988) 336(6200):688–690.
  • LUMELSKY N, BLONDEL 0, LAENG P, VELASCO I, RAVIN R, MCKAY R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science (2001) 292(5520):1389–1394.
  • ••Suggests feasibility of ES cell-based therapyfor diabetes.
  • KENNEDY M, FIRPO M, CHOI K et aL: A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature (1997) 386(6624):488–493.
  • HOPI Y, RULIFSON IC, TSAI BC, HEIT JJ, CAHOY JD, KIM SK: Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. NatL Acad. Sci. USA (2002) 99(25) : 16105–16110.
  • WICHTERLE H, LIEBERAM I, PORTER JA, JESSELL TM: Directed differentiation of embryonic stem cells into motor neurons. Cell (2002) 110(3):385–397.
  • ••In vitro manipulation of instructive signalsto drive differentiation.
  • SHAMBLOTT MJ, AXELMAN J, WANG S et aL: Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. NatL Acad. Sci. USA (1998) 95:13726–13731.
  • THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS et al.: Embryonic stem cell lines derived from human blastocysts. Science (1998) 282:1145–1147.
  • XU C, INOKUMA MS, DENHAM J et aL: Feeder-free growth of undifferentiated human embryonic stem cells. Nat. BiotechnoL (2001) 19(10):971–974.
  • ROSLER ES, FISK GJ, ARES X et aL: Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. (2004) 229(2):259–274.
  • LIU S, QU Y, STEWART TJ et cd.: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. NatL Acad. Sci. USA (2000) 97(11):6126–6131.
  • BARBERI T, KLIVENYI P, CALINGASAN NY et aL: Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. BiotechnoL (2003) 21(10):1200–1207.
  • KIM JH, AUERBACH JM, RODRIGUEZ-GOMEZ JA et aL: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature (2002) 418(6893):50–56. Functional evaluation of cultured NSCs.
  • NISHIMURA F, YOSHIKAWA M, KANDA S et aL: Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: Improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells (2003) 21(2):171–180.
  • SASAI Y: Generation of dopaminergic neurons from embryonic stem cells. NeuroL (2002) 249\(Suppl. 2):I141–1144.
  • ZHANG SC, WERNIG M, DUNCAN ID, BRUSTLE 0, THOMSON JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. BiotechnoL (2001) 19(12):1129–1133.
  • REUBINOFF BE, ITSYKSON P, TURETSKY T et al.: Neural progenitors from human embryonic stem cells. Nat. BiotechnoL (2001) 19(12):1134–1140.
  • BJORKLUND LM, SANCHEZ-PERNAUTE R, CHUNG S et al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Nail. Acad. Sci. USA (2002) 99(4):2344–2349.
  • DYER M, FARRINGTON S, MOHN D, MUNDAY J, BARON M: Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development (2001) 128(10):1717–1730.
  • RIDEOUT WM III, HOCHEDLINGER K, KYBA M, DALEY GQ, JAENISCH R: Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell (2002) 109(1):17–27. Suggests feasibility of therapeutic cloning.
  • DALEY GQ: From embryos to embryoid bodies: Generating blood from embryonic stem cells. Ann. IVY Acad. Sci. (2003) 996(1):122–131.
  • KAUFMAN DS, HANSON ET, LEWIS RL, AUERBACH R, THOMSON JA: Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. NatL Acad. Sci. USA (2001) 98(19):10716–10721.
  • DOEVENDANS PA, KUBALAK SW, AN RH, BECKER DK, CHIEN KR, KASS RS: Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes. J. MoL Cell. CardioL (2000) 32(5):839–851.
  • KEHAT I, KENYAGIN-KARSENTI D, SNIR Met aL: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Clin. Invest. (2001) 108(3):407–414.
  • KACZOROWSKI DJ, PATTERSON ES, JASTROMB WE, SHAMBLOTT MJ: Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab. Res. Rev. (2002) 18(6):442–450.
  • ASSADY S, MAOR G, AMIT M, ITSKOVITZ-ELDOR J, SKORECKI KL, TZUKERMAN M: Insulin production by human embryonic stem cells. Diabetes (2001) 50(8):1691–1697.
  • HUBNER K, FUHRMANN G, CHRISTENSON LK et al.: Derivation of oocytes from mouse embryonic stem cells. Science (2003) 300(5623):1251–1256.
  • GEIJSEN N, HOROSCHAK M, KIM K, GRIBNAU J, EGGAN K, DALEY GQ: Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature (2004) 427(6970):148–154.
  • MATSUDA T, NAKAMURA T, NAKAO K et aL: STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. (1999) 18(15):4261–4269.
  • ZANDSTRA PW, LE H-V, DALEY GQ, GRIFFITH LG, LAUFFENBURGER DA: Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. BiotechnoL Bioeng. (2000) 69:607–617.
  • VISWANATHAN S, BENATAR T, MILEIKOVSKY M, LAUFFENBURGER DA, NAGY A, ZANDSTRA PW: Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. BiotechnoL Bioeng. (2003) 84(5):505–517.
  • VISWANATHAN S, BENATAR T, ROSE-JOHNS, LAUFFENBURGER DA, ZANDSTRA PW: Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6. Stem Cells (2002) 20(2):119–138.
  • •Insights into the action mechanisms of cytokines that signal through gp130.
  • YING QL, NICHOLS J, CHAMBERS I, SMITH A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell (2003) 115(3):281–292.
  • •Identification of molecular events controlling stem cell self-renewal.
  • MOORE KA, EMA H, LEMISCHKA IR: In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood (1997) 89:4337–4347.
  • VARNUM-FINNEY B, PURTON LE, YU M et al.: The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood (1998) 91:4084–4091.
  • KARANU FN, MURDOCH B, MIYABAYASHI T et aL: Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood (2001) 97: 1960-1967.
  • VAN DEN BERG DJ, SHARMA AK, BRUNO E, HOFFMAN R: Role of members of the Wnt gene family in human hematopoiesis. Blood (1998) 92:3189–3202.
  • EAVES CJ: Manipulating hematopoietic stem cell amplification with Wnt. Nat. Immunol. (2003) 4:511–512.
  • WILLERT K, BROWN JD, DANENBERG E et al.: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature (2003) 423(6938):448–452.
  • •Demonstrates the usefulness of wnt ligands for HSC expansion in vitro.
  • DE HAAN G, WEERSING E, DONTJE B et al.: In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev. Cell (2003) 4(2):241–251.
  • UEDA T, TSUJI K, YOSHINO H et aL:Expansion of human NOD/SCID-repopulating cells by stem cell factor, F1k2/ F1t3 ligand, thrombopoietin, IL-6 and soluble IL-6 receptor. J Clin. Invest. (2000) 105:1013–1021.
  • AUDET J, MILLER CL, ROSE-JOHN S, PIRET JM, EAVES CJ: Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc. Nail. Acad. Sci. USA (2001) 98:1757–1762.
  • EMA H, TAKANO H, SUDO K, NAKAUCHI H: In vitro self-renewal division of hematopoietic stem cells. J. Exp. Med. (2000) 192(9):1281–1288.
  • BHATIA M, BONNET D, WU D et aL:Bone morphogenic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. (1999) 189:1139–1148.
  • BHARDWAJ G, MURDOCH B, WU D et al.: Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. ImmunoL (2001) 2:172–180.
  • MOSTAFA SS, PAPOUTSAKIS ET, MILLER WM: Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific markers in cultured human megakaryocytes. Exp. HematoL (2001) 29(7):873–883.
  • MOSTAFA SS, MILLER WM, PAPOUTSAKIS ET: Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br. J. HaematoL (2000) 111(3):879–889.
  • •Demonstrates the influence of physicochemical parameters in HSC culture.
  • YANG H, MILLER WM, PAPOUTSAKIS ET: Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells (2002) 20(4):320–328.
  • MCADAMS TA, MILLER WM, PAPOUTSAKIS ET: pH is a potent modulator of erythroid differentiation. Br. J. HaematoL (1998) 103:317–325.
  • HEVEHAN DL, PAPOUTSAKIS ET, MILLER WM: Physiologically significant effects of pH and oxygen tension on granulopoiesis. Exp. Hematol. (2000) 28:267–275.
  • HEVEHAN DL, WENNING LA, MILLER WM, PAPOUTSAKIS ET: Dynamic model of ex vivo granulocytic kinetics to examine the effects of oxygen tension, pH, and interleukin-3. Exp. Hematol. (2000) 28(9):1016–1028.
  • REYNOLDS BA, WEISS S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (1992) 255(5052):1707–1710.
  • MORSHEAD CM, REYNOLDS BA, CRAIG CG et al.: Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependyrnal cells. Neuron (1994) 13(5):1071–1082.
  • DOETSCH F, PETREANU L, CAILLE I, GARCIA-VERDUGO JM, ALVAREZ-BUYLLA A: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron (2002) 36(6):1021–1034.
  • PEVNY L, RAO MS: The stem-cell menagerie. Trends Neurosci. (2003) 26(7):351–359.
  • SHIMAZAKI T, SHINGO T, WEISS S: The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci. (2001) 21(19):7642–7653.
  • LAI K, KASPAR BK, GAGE FH, SCHAFFER DV: Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. (2003) 6(1):21–27.
  • •Insight into the signalling factors regulating NSC proliferation.
  • RAFF M: Adult stem cell plasticity: fact or artifact? Ann. Rev. Cell Dev. Biol. (2003) 19(1):1–22.
  • PLUCHINO S, QUATTRINI A, BRAMBILLA E et al.: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature (2003) 422(6933):688–694.
  • ••Functional evaluation ofcultured neurospheres.
  • BEN-HURT, EINSTEIN 0, MIZRACHI-KOL R et al.: Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia (2003) 41(1):73–80.
  • GERMAIN L, GOULET F, MOULIN V, BERTHOD F, AUGER FA: Engineering human tissues for in vivo applications. Ann. IVY Acad. Sci. (2002) 961(1):268–270.
  • ATALA A: Tissue engineering, stem cells, and cloning for the regeneration of urologic organs. Clin. Plast. Surg. (2003) 30(4):649–667.
  • BJORNSON CR, RIETZE RL, REYNOLDS BA, MAGLI MC, VESCOVI AL: Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science (1999) 283:534–537.
  • CLARKE DL, JOHANSSON CB, WILBERTZ Jet al.: Generalized potential of adult neural stem cells. Science (2000) 288:1660–1663.
  • TANIGUCHI H, TOYOSHIMA T, FUKAO K, NAKAUCHI H: Presence of hematopoietic stem cells in the adult liver. Nat. Med. (1996) 2:198–203.
  • GUSSONI E, SONEOKA Y, STRICKLAND CD et al.: Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature (1999) 401:390–394.
  • JACKSON KA, MIT, GOODELL MA: Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA (1999) 96:14482–14486.
  • SEALE P, SABOURIN LA, GIRGIS-GABARDO A, MANSOURI A, GRUSS P, RUDNICKI MA: Pax7 is required for the specification of myogenic satellite cells. Cell (2000) 102(6):777–786.
  • PEREIRA RF, O& HARA MD, LAPTEV AVet al.: Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Nail. Acad. Sci. USA (1998) 95:1142–1147.
  • HORWITZ EM, PROCKOP DJ, FITZPATRICK LA et al.: Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. (1999) 5:309–313.
  • FERRARI G, CUSELLA-DE ANGELIS G,COLETTA M et al.: Muscle regeneration by bone marrow-derived myogenic progenitors. Science (1998) 279:1528–1530.
  • PETERSEN BE, BOWEN WC, PATRENE KD et al.: Bone marrow as a potential source of hepatic oval cells. Science (1999) 284:1168–1170.
  • LAGASSE E, CONNORS H, AL-DHALIMY M et al.: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. (2000) 6:1229–1234.
  • EGLITIS MA, MEZEY E: Hematopoieticcells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Nail. Acad. Sci. USA (1997) 94:4080–4085.
  • KOPEN GC, PROCKOP DJ, PHINNEY DG: Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mice brains. Proc. Natl Acad. Sci. USA (1999) 96:10711–10716.
  • BRAZELTON TR, ROSSI FM, KESHET GI, BLAU HM: From marrow to brain: expression of neuronal phenotypes in adult mice. Science (2000) 290(5497):1775–1779.
  • SHI Q, RAFII S, WI] MH et al.: Evidence for circulating bone marrow-derived endothelial cells. Blood (1998) 92:362–367.
  • WANG X, WILLENBRING H, AKKARI Yet al.: Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature (2003) 422(6934):897–901.
  • MCKINNEY-FREEMAN SL, MAJKA SM, JACKSON KA, NORWOOD K, HIRSCHI KK, GOODELL MA: Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Exp. Hematol. (2003) 31(9):806–814.
  • WAGERS AJ, WEISSMAN IL: Plasticity of adult stem cells. Cell (2004) 116(5):639–648.
  • KRAUSE DS, THEISE ND, COLLECTOR MI et al.: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell (2001) 105:369–377.
  • •Evaluation of bone marrow stem cell plasticity at the single-cell level.
  • CORBEL SY, LEE A, YI L et aL: Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. (2003) 9(12):1528–1532.
  • BAKSH D, DAVIES JE, ZANDSTRA PW: Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp. Hematol (2003) 31(8):723–732.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchyrnal stem cells derived from adult marrow. Nature (2002) 418(6893):41–49.
  • ••Characterisation of MAPCs.
  • VERFAILLIE CM, SCHWARTZ R, REYES M, JIANG Y: Unexpected potential of adult stem cells. Ann. NY Acad. Sci. (2003) 996(1):231–234.
  • JIANG Y, HENDERSON D, BLACKSTAD M, CHEN A, MILLER RF, VERFAILLIE CM: Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. NatL Acad. Sci. USA (2003) 100\(Suppl. 1):11854–11860.
  • SCHWARTZ RE, REYES M, KOODIE L et al.: Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. (2002) 109(10):1291–1302.
  • JIANG Y, VAESSEN B, LENVIK T, BLACKSTAD M, REYES M, VERFAILLIE CM: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. HematoL (2002) 30(8):896–904.
  • TOMA JG, AKHAVAN M, FERNANDES KJ et al.: Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. (2001) 3:778–784.
  • •Discovery of a new source of multipotent progenitors in the adult.
  • SZILVASSY SJ, NICOLINI FE, EAVES CJ, MILLER CL: Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts. In: Hematopoietic Stem Cell Protocols. Jordon CT, Klug CA (Eds), Humana Press, Totowa, NJ, USA (2001).
  • BHATIA M, BONNET D, MURDOCH B, GAN 01, DICK JE: A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. (1998) 4:1038–1045.
  • ZANJANI ED, ALMEIDA-PORADA G, LIVINGSTON AG, FLAKE AW, OGAWA M: Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34* cells. Exp. HematoL (1998) 26:353–360.
  • PELED A, PETIT I, KOLLET 0 et al.:Dependence of human stem cellengraftment and repopulation of NOD/SCID mice on CXCR4. Science (1999) 283:845–848.
  • GOTHOT A, VAN DER LOO JC, CLAPP DW, SROUR EF: Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34* cells in non-obese diabetic/severe combined immune-deficient mice. Blood (1998) 92:2641–2649.
  • HABIBIAN HK, PETERS SO, HSIEH CC et al.: The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. J. Exp. Med. (1998) 188:393–398.
  • GLIMM H, OH I-H, EAVES C: Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter GO. Blood (2000) 96:4185–4193.
  • LAMBERT J-F, LIU M, COLVIN GA et al.: Marrow stem cells shift gene expression and engraftment phenotype with cell cycle transit. J. Exp. Med. (2003) 197(11):1563–1572.
  • GLIMM H, TANG P, CLARK-LEWIS I, VON KALLE C, EAVES C: Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/ SCID mice. Blood (2002) 99(9):3454–3457.
  • MADLAMBAYAN GJ, BAKSH D, ZANDSTRA PW: A systematic approach to the development of stem cell expansion cultures. In: Adult d Fetal Stem Cells. Lanza R (Ed.), Elsevier Science, San Diego, USA (In Press).
  • BOX GEP, DRAPER NR: Empirical Model-Building and Response Surfaces. Box GEP, Draper NR (Eds), Wiley & Sons, New York, USA (1987):669.
  • AUDET J, MILLER CL, EAVES CJ, PIRET JM: Common and distinct features of cytokine effects on hematopoietic stem and progenitor cells revealed by dose-response surface analysis. BiotechnoL Bioeng. (2002) 80:393–404.
  • KITANO H: Systems biology: a brief overview. Science (2002) 295(5560):1662–1664.
  • UNWIN RD, GASKELL SJ, EVANS CA, WHETTON AD: The potential for proteomic definition of stem cell populations. Exp. HematoL (2003) 31(12):1147–1159.
  • PARK IK, HEY, LIN F et al.: Differential gene expression profiling of adult murine hematopoietic stem cells. Blood (2002) 99(2):488–498.
  • •Demonstrates the value of a systems-level approach in stem cell biology.
  • PRUDHOMME W, DALEY GQ, ZANDSTRA PW, LAUFFENBURGER DA: Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation behavior. Proc. Nail. Acad. Sci. USA (2004) 101(9):2900–2905.
  • ••Innovative multivariate and systems-levelapproaches applied to the study of stem cell differentiation.
  • SCHAFFER DV: Genetic approaches to tissue repair. Ann. NY Acad. Sci. (2002) 961:68–70.
  • PARK KI, OUREDNIK J, OUREDNIK V et al.: Global gene and cell replacement strategies via stem cells. Gene Ther. (2002) 9(10):613–624.
  • SNYDER EY, TAYLOR RM, WOLFE JH: Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature (1995) 374(6520):367–370.
  • FLAX JD, AURORA S, YANG C et cll.: Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. BiotechnoL (1998) 16(11):1033–1039.
  • AKERUD P, CANALS JM, SNYDER EY, ARENAS E: Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. Neurosci. (2001) 21(20):8108–8118.
  • BURT RK, TRAYNOR A: Hematopoietic stem cell therapy of autoimmune diseases. Curr. Opin. HematoL (1998) 5:472–477.
  • NICOLINI FE, IMREN S, OH I-H et cll.: Expression of a human beta-globin transgene in erythroid cells derived from retrovirally transduced transplantable human fetal liver and cord blood cells. Blood (2002) 100(4):1257–1264.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BASILE G et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288(5466):669–672.
  • •Human gene therapy trial.
  • ABONOUR R, WILLIAMS DA, EINHORN Let al.: Efficient retrovirus-mediated transfer of the multidrug 642 resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat. Med. (2000) 6(6):652–658.
  • CHALANDON Y, JIANG X, HAZLEWOOD G et al.: Modulation of p210(BCR-ABL) activity in transduced primary human hematopoietic cells controls lineage programming. Blood (2002) 99(9):3197–3204.
  • IMREN S, PAYEN E, WESTERMAN KA et al.: Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl Acad. Sci. USA (2002) 99(22):14380–14385.
  • PAWLIUK R, WESTERMAN KA, FABRY ME et al.: Correction of sickle cell disease in transgenic mouse models by gene therapy. Science (2001) 294(5550):2368–2371.
  • MAY C, RIVELLA S, CALLEGARI Jet al.: Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature (2000) 406(6791):82–86.
  • GALIMI F, NOLL M, KANAZAWA Y et al.: Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood (2002) 100(8):2732–2736.
  • BANK A: Hematopoietic stem cell gene therapy: selecting only the best. J. Clin. Invest. (2003) 112(10):1478–1480.
  • VOLLWEILER JL, ZIELSKE SP, REESE JS, GERSON SL: Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transpl (2003) 32(1):1–7.
  • JIN L, SIRITANARATKUL N, EMERY DW et al.: Targeted expansion of genetically modified bone marrow cells. Proc. Natl Acad. Sci. USA (1998) 95(14):8093–8097.
  • RICHARD RE, BLAU CA: Small-molecule-directed Mpl signaling can complement growth factors to selectively expand genetically modified cord blood cells. Stem Cells (2003) 21(1):71–78.
  • WHITNEY ML, OTTO KG, BLAU CA, REINECKE H, MURRY CE: Control of myoblast proliferation with a synthetic ligand. j Biol. Chem. (2001) 276(44):41191–41196.
  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl J Med. (2002) 346(16):1185–1193.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302(5644):415–419.
  • •Unfortunate outcome of a human gene therapy trial.
  • LOU J, XU F, MERKEL K, MANSKE P: Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop. Res. (1999) 17(1):43–50.
  • CHANG SC, CHUANG HL, CHEN YR et al.: Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Then (2003) 10(24):2013–2019.
  • TSUCHIDA H, HASHIMOTO J, CRAWFORD E, MANSKE P, LOU J: Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthop. Res. (2003) 21(1):44–53.
  • MOUTSATSOS IK, TURGEMAN G, ZHOU S et al.: Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mo/. Ther. (2001) 3(4):449–461.
  • BAXTER MA, WYNN RF, DEAKIN JA et al.: Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood (2002) 99(5):1857–1859.
  • SHERLEY JL: Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells (2002) 20(6):561–572.
  • FAWELL S, SEERY J, DAIKH Yet al.: Tat-mediated delivery of heterologous proteins into cells. Proc. Natl Acad. Sci. USA (1994) 91(2):664–668.
  • WADIA JS, DOWDY SF: Protein transduction technology. Curr. Opin. Biotech. (2002) 13(1):52–56.
  • KROSL J, AUSTIN P, BESLU N, KROON E, HUMPHRIES RK, SAUVAGEAU G: In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat. Med. (2003) 9(11):1428–1432.
  • ••Innovative and useful approach to increaseHSC expansion in vitro.
  • ANTONCHUK J, SAUVAGEAU G, HUMPHRIES RK: HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell (2002) 109(1):39–45.
  • COLLINS PC, MILLER WM, PAPOUTSAKIS ET: Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol Bioeng (1998) 59:532–543.
  • KWON J, KIM BS, KIM MJ, PARK HW: Suspension culture of hematopoietic stem cells in stirred bioreactors. Biotechnol Lett. (2003) 25(2):179–182.
  • ZANDSTRA P, PETZER A, EAVES C, PIRET M: Cellular determinants affecting the rate of cytokine depletion in cultures of human hematopoietic cells. Biotechnol Bioeng. (1997) 54:58–66.
  • KALLOS MS, SEN A, BEHIE LA: Large-scale expansion of mammalian neural stem cells: a review. Med. Biol Eng. Comput. (2003) 41(3):271–282.
  • KALLOS MS, BEHIE LA: Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng (1999) 63(4):473–483.
  • •Elegant application of engineering for the development of a scaled-up NSC culture system.
  • SEN A, KALLOS MS, BEHIE LA: Expansion of mammalian neural stem cells in bioreactors: effect of power input and medium viscosity. Dev. Brain Res. (2002) 134(1-2):103–113.
  • SEN A, KALLOS MS, BEHIE LA: Passaging protocols for mammalian neural stem cells in suspension bioreactors. Biotechnol Prog. (2002) 18(2):337–345.
  • BOUDREAULT P, TREMBLAY JP, PEPIN MF, GARNIER A: Scale-up of a myoblast culture process. J Biotechnol (2001) 91(1):63–74.
  • ZANDSTRA PW, BAUWENS C, YIN T et al.: Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. (2003) 9(4):767–778.
  • DANG SM, KYBA M, PERLINGEIRO R, DALEY GQ, ZANDSTRA PW: Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. (2002) 78(4):442–453.
  • ••Demonstrates the impact of culture systemdesign on stem cell differentiation and lineage selection.
  • CABRITA GJ, FERREIRA BS, DA SILVA CL, GONCALVES R, ALMEIDA-PORADA G, CABRAL JM: Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol (2003) 21(5):233–240.
  • NIELSEN LK: Bioreactors for hematopoietic cell culture. Ann. Rev. Biomed. Eng. (1999) 1:129–152.
  • LUNDELL BI, VREDENBURGH JJ, TYER C, DESOMBRE K, SMITH AK: Ex vivo expansion of bone marrow from breast cancer patients: reduction in tumor cell content through passive purging. Bone Marrow Transpl. (1998) 22:153–159.
  • UDOMSAKDI C, EAVES CJ, SWOLIN B, REID DS, BARNETT MJ, EAVES AC: Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc. Natl. Acad. Sci. USA (1992) 89:6192–6196.
  • EAVES AC, EAVES CJ, PHILLIPS GL, BARNETT MJ: Culture purging in leukemia: past, present, and future. Leuk. Lymphoma. (1993) 11\(Suppl. 1):259–263.
  • CHRIST B, EAVES C, FORREST D et aL: Autografting with cultured marrow in chronic myeloid leukemia (CML): Long-term follow-up of the Vancouver experience. Blood (2003) 102:740a.
  • STIFF P, CHEN B, FRANKLIN W et aL: Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots after high-dose chemotherapy for breast cancer. Blood (2000) 95:2169–2174.
  • JAROSCAK J, GOLTRY K, SMITH A et al.: Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a Phase I trial using the AastromReplicell System. Blood (2003) 101(12):5061–5067.
  • •Results of a clinical trial on the transplantation of haematopoietic cells cultured in a perfusion bioreactor.
  • STEWART AK, SUTHERLAND DR, NANJI S et al.: Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures. Hum. Gene Then (1999) 10:1953–1964.
  • •One of the rare human studies in which the progeny of cultured haematopoietic cells was tracked in vivo following transplantation.
  • VISWANATHAN S, ZANDSTRA PW: Towards predictive models of stem cell fate. Cytotechno/ogy (2003) 41:75–92.
  • DEASY BM, JANKOWSKI RJ, PAYNE TR et al.: Modeling stem cell population growth: Incorporating terms for proliferative heterogeneity. Stem Cells (2003) 21(5):536–545.
  • DEASY BM, QU-PETERSON Z, GREENBERGER JS, HUARD J: Mechanisms of muscle stem cell expansion with cytokines. Stem Cells (2002) 20(1):50–60.
  • YANG H, PAPOUTSAKIS ET, MILLER MW: Model-based estimation of myeloid hematopoietic progenitor cells in ex vivo cultures for cell and gene therapies. Biotechnol Bioeng. (2001) 72:144–155.
  • TERADA N, HAMAZAKI T, OKA M et al.: Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature (2002) 416(6880):542–545.
  • ALVAREZ-DOLADO M, PARDAL R, GARCIA-VERDUGO JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature (2003) 425(6961):968–973.
  • NAGAI Y, MIYAZAKI M, AOKI R et al.: A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat. Biotechnol (2000) 18:313–316.
  • ZACCOLO M, DE GIORGI F, CHO CY et al.: A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol. (2000) 2:25–29.
  • MEREDITH GD, SIMS CE, SOUGHAYER JS, ALLBRITTON NL: Measurement of kinase activation in single mammalian cells. Nat. Biotechnol (2000) 18:309–312.
  • •Novel technology to measure the activity of multiple kinases in single cells.
  • ZARRINE-AFSAR A, KRYLOV SN: Use of capillary electrophoresis and endogenous fluorescent substrate to monitor intracellular activation of protein kinase A. Anal. Chem. (2003) 75(15):3720–3724.
  • TERUEL MN, MEYER T: Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science (2002) 295(5561):1910–1912.
  • ••High-throughput, temporal and spatial analysis of signal transduction in single cells.
  • LI H, SIMS CE, KALUZOVA M, STANBRIDGE EJ, ALLBRITTON NL: A quantitative single-cell assay for protein kinase B reveals important insights into the biochemical behavior of an intracellular substrate peptide. Biochemistry (2004) 43(6):1599–1608.
  • AUDET J, SOUGHAYER JS, SIMS CE, ONG ST, ALLBRITTON NL: Quantitative measurements of growth-promoting signals in single chronic myeloid leukemia cells (abstract). Blood (2003) 102:420a.
  • PEREZ OD, NOLAN GP: Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol (2002) 20:155–162.
  • •Demonstrates the value of flow cytometry to simultaneously measure the activation state of multiple kinases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.