152
Views
34
CrossRef citations to date
0
Altmetric
Review

Gene therapy for chronic granulomatous disease

, &
Pages 1423-1434 | Published online: 23 Feb 2005

Bibliography

  • HEY WORTH PG, CROSS AR, CURNUTTE JT: Chronic granulomatous disease. Can: Opin. Immunol (2003) 15(5):578–584.
  • WINKELSTEIN JA, MARINO MC, JOHNSTON RB JR et al.: Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) (2000) 79(3):155–169.
  • •The largest and most complete epidemiology report on CGD.
  • ROOS D, DE BOER M, KURIBAYASHI F et al.: Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood (1996) 87(5):1663–1681.
  • SEGAL BH, LETO TL, GALLIN JI, MALECH HL, HOLLAND SM: Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) (2000) 79(3):170–200.
  • ••A complete review on genetics,biochemical mechanisms, clinical presentation and treatment of CGD.
  • GOLDBLATT D: Current treatment options for chronic granulomatous disease. Expert Opin. Pharmacother: (2002) 3(7):857–863.
  • HORWITZ ME, BARRETT AJ, BROWN MR et al.: Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl. Med. (2001) 344(12):881–888.
  • •An interesting study describing the efficacy of non-myeloablative allogeneic stem cell transplantation in 10 CGD patients.
  • HO CM, VOWELS MR, LOCKWOOD L, ZIEGLER JB: Successful bone marrow transplantation in a child with X-linked chronic granulomatous disease. Bone Marrow Transplant. (1996) 18(1):213–215.
  • CALVINO MC, MALDONADO MS, OTHEO E et al.: Bone marrow transplantation in chronic granulomatous disease. Eur.j Pediatr. (1996) 155(10):877–879.
  • HOBBS JR, MONTEIL M, MCCLUSKEY DR, JURGES E, EL TUMI M: Chronic granulomatous disease 100% corrected by displacement bone marrow transplantation from a volunteer unrelated donor. Ear: Pediatr. (1992) 151(11):806–810.
  • KAMANI N, AUGUST CS, CAMPBELL DE, HASSAN NF, DOUGLAS SD: Marrow transplantation in chronic granulomatous disease: an update, with 6-year follow-up. Pediatr. (1988) 113(4):697–700.
  • WILLIAMS DA, LEMISCHKA IR, NATHAN DG, MULLIGAN RC: Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature (1984) 310(5977):476–480.
  • HU J, DUNBAR CE: Update on hematopoietic stem cell gene transfer using non-human primate models. Curc Opin. Ther. (2002) 4(5):482–490.
  • GOEBEL W, KUME A, DINAUER M: Gene therapy for chronic granulomatous disease and leukocyte adhesion deficiency. Int. Ped. Hematol Oncol (2001) 7:359–372.
  • MARDINEY M 3rd, JACKSON SH, SPRATT SK et al.: Enhanced host defense after gene transfer in the murine p470°deficient model of chronic granulomatous disease. Blood (1997) 89(7) :2268–2275.
  • BJORGVINSDOTTIR H, DING C, PECH N et al.: Retroviral-mediated gene transfer of gp91Phm" into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood (1997) 89(1):41–48.
  • •First report of correction of an animal model of genetic blood disease using gene therapy.
  • DINAUER MC, GIFFORD MA, PECH N, LI LL, EMSHWILLER P: Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood (2001) 97(12):3738–3745.
  • •A relevant study using the X-CGD knockout mouse model to demonstrate the efficacy of gene therapy and bone marrow transplantation to correct clinical manifestations of CGD.
  • LIESE J, KLOOS S, JENDROSSEK V et al.: Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. Pediatr. (2000) 137(5):687–693.
  • CALE CM, JONES AM, GOLDBLATT D: Follow up of patients with chronic granulomatous disease diagnosed since 1990. Clin. Exp. Immunol (2000) 120(2):351–355.
  • SPEERT DP, BOND M, WOODMAN RC, CURNUTTE JT: Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonwddative killing by neutrophils in host defense. Infect. Dis. (1994) 170(6):1524–1531.
  • FOSTER CB, LEHRNBECHER T, MOL F et al.: Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. Clin. Invest. (1998) 102(12):2146–2155.
  • BROWN JR, GOLDBLATT D, BUDDLE J, MORTON L, THRASHER AJ: Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD). Leukoc. Biol. (2003) 73(5):591–599.
  • SEGAL AW: The NADPH oxidase and chronic granulomatous disease. Ma Med. Today (1996) 2(3):129–135.
  • MORGENSTERN DE, GIFFORD MA, LI LL, DOERSCHUK CM, DINAUER MC: Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. I Exp. Med. (1997) 185(2):207–218.
  • PETERSEN JE, HIRAN TS, GOEBEL WS et al: Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. Invest. Dermatol (2002) 118(3):424–429.
  • YANG S, PANOSKALTSIS-MORTARI A, SHUKLA M, BLAZAR BR, HADDAD IY: Exuberant inflammation in nicotinamide adenine dinucleotide phosphate-oxidase-deficient mice after allogeneic marrow transplantation. Immunol (2002) 168(11):5840–5847.
  • MACEDO F, MCHUGH K, GOLDBLATT D: Pericardial effusions in two boys with chronic granulomatous disease. Pediatr. Radial. (1999) 29(11):820–822.
  • BARESE CN, PODESTA M, LITVAK E, VILLA M, RIVAS EM: Recurrent eosinophilic cystitis in a child with chronic granulomatous disease. Pediatr. Hematol Omni (2004) 26(3):209–212.
  • BAUER SB, KOGAN SJ: Vesical manifestations of chronic granulomatous disease in children. Its relation to eosinophilic cystitis. Urology (1991) 37(5):463–466.
  • GOLDBLATT D, BUTCHER J, THRASHER AJ, RUSSELL-EGGITT I: Chorioretinal lesions in patients and carriers of chronic granulomatous disease. J. Pediatr. (1999) 134(6):780–783.
  • PASIC S, MINIC A, MINIC P et al.: Long-term follow-up and prognosis of chronic granulomatous disease in Yugoslavia: is there a role for early bone marrow transplantation?" Clin. Immunol (2003) 23(1):55–61.
  • JOHNSTON RB 3rd, HARBECK RJ, JOHNSTON RB JR: Recurrent severe infections in a girl with apparently variable expression of mosaicism for chronic granulomatous disease. J. Pediatr. (1985) 106(1):50–55.
  • CHOWDHURY MM, ANSTEY A, MATTHEWS CN: The dermatosis of chronic granulomatous disease. Clin. Exp. Dermatol (2000) 25(3):190–194.
  • LOVAS JG, ISSEKUTZ A, WALSH N, MILLER RA: Lupus erythematosus-like oral mucosal and skin lesions in a carrier of chronic granulomatous disease. Chronic granulomatous disease carrier genodermatosis. Oral. Surg. Oral. Med. Oral. Pathol Oral. Radial. Endod. (1995) 80(1):78–82.
  • GALLIN JI, ALLING DW, MALECH HL et al.: Itraconazole to prevent fungal infections in chronic granulomatous disease. N. Engl. J. Med. (2003) 348(24):2416–2422.
  • MOUY R, VEBER F, BLANCHE S et al.: Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. Pediatr: (1994) 125(6 Pt 1):998–1003.
  • WEENING RS, LEITZ GJ, SEGER RA: Recombinant human interferon-gamma in patients with chronic granulomatous disease-European follow up study. Ear: J. Pediatr. (1995) 154(4):295–298.
  • EZEKOWITZ RA, DINAUER MC, JAFFE HS, ORKIN SH, NEWBURGER PE: Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon gamma. N Engl. J. Med. (1988) 319(3):146–151.
  • ISHIBASHI F, MIZUKAMI T, KANEGASAKI S et al: Improved superoxide-generating ability by interferon gamma due to splicing pattern change of transcripts in neutrophils from patients with a splice site mutation in CYBB gene. Blood (2001) 98(2):436–441.
  • NO AUTHORS LISTED: A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. N Engl. J. Med. (1991) 324(8):509–516.
  • AHLIN A, LARFARS G, ELINDER G, PALMBLAD J, GYLLENHAMMAR H: Gamma interferon treatment of patients with chronic granulomatous disease is associated with augmented production of nitric oxide by polymorphonuclear neutrophils. Clin. Diagn. Lab. Immunol (1999) 6(3):420–424.
  • SCHIFF D, RAE J, MARTIN TR, DAVIS BH, CURNUTTE J: Increased phagocyte FcyRI expression and improved Fcy-receptor mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects. Blood (1997) 90:3187–3194.
  • SCHAPPI MG, SMITH VV, GOLDBLATT D, LINDLEY KJ, MILLA PJ: Colitis in chronic granulomatous disease. Arch. Dis. Child. (2001) 84(2):147–151.
  • STEIN RB, HANAUER SB: Medical therapy for inflammatory bowel disease. Gastroenterol Clin. North Am. (1999) 28(2):297–321.
  • SEGER RA, GUNGOR T, BELOHRADSKY BH et al.: Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985-2000. Blood (2002) 100(13):4344–4350.
  • •A large study that describes the European experience on stem cell transplantation in severely ill CGD patients using myeloablation and non-depleted allografts.
  • ROSEN-WOLFF A, SOLDAN W, HEYNE K et al.: Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann. Hematol (2001) 80(2):113–115.
  • CROSS AR, HEYWORTH PG, RAE J, CURNUTTE JT: A variant X-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J. Biol. Chem. (1995) 270(14):8194–8200.
  • SCHAPIRO BL, NEWBURGER PE, KLEMPNER MS, DINAUER MC: Chronic granulomatous disease presenting in a 69-year-old man. N Engl. I Med. (1991) 325(25):1786–1790.
  • ROOS D, DE BOER M, BORREGARD N et al: Chronic granulomatous disease with partial deficiency of cytochrome b558 and incomplete respiratory burst: variants of the X-linked, cytochrome 6558-negative form of the disease. J. Leukoc. Biol. (1992) 51(2):164–171.
  • BORDIGNON C, RONCAROLO MG: Therapeutic applications for hematopoietic stem cell gene transfer. Nat. Immunol (2002) 3(4):318–321.
  • BRENNER S, MALECH HL: Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim. Biophys. Acta (2003) 1640(1):1–24.
  • DONAHUE RE, DUNBAR CE: Update on the use of nonhuman primate models for preclinical testing of gene therapy approaches targeting hematopoietic cells. Hum. Gene Ther. (2001) 12(6):607–617.
  • MILLER DG, ADAM MA, MILLER AD:Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Ma Cell. Biol. (1990) 10(8):4239–4242.
  • KIEM HP, ANDREWS RG, MORRIS J et al.: Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood (1998) 92(6):1878–1886.
  • DUNBAR CE, TAKATOKU M, DONAHUE RE: The impact of ex vivo cytokine stimulation on engraftment of primitive hematopoietic cells in a non-human primate model. Ann. NY Acad. Sci. (2001) 938:236-244; discussion 244–235.
  • MORITZ T, WILLIAMS DA: Gene transfer into the hematopoietic system. Curr. Opin. Hematol (1994) 1(6):423–428.
  • MACNEILL EC, HANENBERG H, POLLOK KE et al: Simultaneous infection with retroviruses pseudotyped with different envelope proteins bypasses viral receptor interference associated with colocalization of gp70 and target cells on fibronectin CH-296.j Viral. (1999) 73(5):3960–3967.
  • WU T, KIM HJ, SELLERS SE et Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. MM. The]: (2000) 1(3):285–293.
  • SELLERS SE, TISDALE JF, AGRICOLA BA, DONAHUE RE, DUNBAR CE: The presence of the carboxy-terminal fragment of fibronectin allows maintenance of non-human primate long-term hematopoietic repopulating cells during extended ex vivo culture and transduction. Exp. Hematol (2004) 32(2):163–170.
  • HUHN RD, TISDALE JF, AGRICOLA B et al: Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Hum. Gene Ther: (1999) 10(11):1783–1790.
  • ROSENZWEIG M, MACVITTIE TJ, HARPER D et al.: Efficient and durable gene marking of hematopoietic progenitor cells in nonhuman primates after nonablative conditioning. Blood (1999) 94(7):2271–2286.
  • AIUTI A, CATTANEO F, CASSANI B et al: Safety and efficacy of stem cell gene therapy combined with nonmyeloablative conditioning for the treatment of ADA-SCID. Blood (2003) 102(11):154a.
  • AIUTI A, SLAVIN S, AKER M et al: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science (2002) 296(5577):2410–2413.
  • BECKER S, WASSER S, HAUSES M et al: Correction of respiratory burst activity in X-linked chronic granulomatous cells to therapeutically relevant levels after gene transfer into bone marrow CD34+ cells. Hum. Gene Ther. (1998) 9(11):1561–1570.
  • DING C, KUME A, BJORGVINSDOTTIR H et al.: High-level reconstitution of respiratory burst activity in a human X-linked chronic granulomatous disease (X-CGD) cell line and correction of murine X-CGD bone marrow cells by retroviral-mediated gene transfer of human gp9 Wm". Blood (1996) 88(5):1834–1840.
  • KUME A, DINAUER MC: Retrovirus-mediated reconstitution of respiratory burst activity in X-linked chronic granulomatous disease cells. Blood (1994) 84(10):3311–3316.
  • ZHEN L, KING AA, XIAO Y et al: Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91Phar. Proc. Nati Acad. Sci. USA (1993) 90(21):9832–9836.
  • SEKHSARIA S, GALLIN JI, LINTON GF et al.: Peripheral blood progenitors as a target for genetic correction of p47Phar-deficient chronic granulomatous disease. Proc. Nati Acad. Sci. USA (1993) 90(16):7446–7450.
  • LI F, LINTON GE SEKHSARIA S et al.: CD34+ peripheral blood progenitors as a target for genetic correction of the two flavocytochrome b558 defective forms of chronic granulomatous disease. Blood (1994) 84(1):53–58.
  • WEIL WM, LINTON GF, WHITING-THEOBALD N et al: Genetic correction of p67P-ha'' deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer. Blood (1997) 89(5):1754–1761.
  • PORTER CD, PARKAR MH, COLLINS MK, LEVINSKY RJ, KINNON C: Efficient retroviral transduction of human bone marrow progenitor and long-term culture-initiating cells: partial reconstitution of cells from patients with X-linked chronic granulomatous disease by gp91Ph'r expression. Blood (1996) 87(9):3722–3730.
  • GREZ M, BECKER S, SAULNIER S et al.: Gene therapy of chronic granulomatous disease. Bone Marrow Transplant. (2000) 25\(Suppl. 2):599–5104.
  • BRENNER S, WHITING-THEOBALD NL, LINTON GF et al.: Concentrated RD114-pseudotyped MFGS-gp910°' vector achieves high levels of functional correction of the chronic granulomatous disease oxidase defect in NOD/SCID! P-microglobulin-/- repopulating mobilized human peripheral blood CD34+ cells. Blood (2003) 102(8):2789–2797.
  • •An important study using an alternative viral envelope to improve gene transfer of retroviral vectors into human X-CGD CD34' cells.
  • LOGAN AC, LUTZKO C, KOHN DB: Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr. Opin. Biotechnol (2002) 13(5):429–436.
  • HORN PA, KEYSER KA, PETERSON LJet al.: Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood (2004) 103:3710–3716.
  • LEVASSEUR DN, RYAN TM, PAWLIK KM, TOWNES TM: Correction of a mouse model of sickle cell disease: lentiviral/antisickling P-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood (2003) 102(13):4312–4319.
  • PERSONS DA, ALLAY ER, SAWAI N et al.: Successful treatment of murine P-thalassemia using M vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood (2003) 102(2):506–513.
  • RIVELLA S, MAY C, CHADBURN A, RIVIERE I, SADELAIN M: A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human P-globin gene transfer. Blood (2003) 101(8):2932–2939.
  • MAY C, RIVELLA S, CALLEGARI J et al.: Therapeutic haemoglobin synthesis in I3-thalassaemic mice expressing lentivirus-encoded human P-globin. Nature (2000) 406:82–86.
  • MIYOSHI H, SMITH KA, MOSIER DE, VERMA IM, TORBETT BE: Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science (1999) 283(5402):682–686.
  • GUENECHEA G, GAN OI, INAMITSU T et al: Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. MM. Ther. (2000) 1(6):566–573.
  • SAULNIER SO, STEINHOFF D, DINAUER MC et al.: Lentivirus-mediated gene transfer of gp91Phar corrects chronic granulomatous disease (CGD) phenotype in human X-CGD cells. I Gene Med. (2000) 2(5):317–325.
  • ROESLER J, BRENNER S, BUKOVSKY AA et al.: Third-generation, self-inactivating gp91Phar lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood (2002) 100(13):4381–4390.
  • POLLOCK JD, WILLIAMS DA, GIFFORD MA et al.: Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. (1995) 9(2):202–209.
  • BJORGVINSDOTTIR H, ZHEN L, DINAUER MC: Cloning of murine gp91Phm" cDNA and functional expression in a human X-linked chronic granulomatous disease cell line. Blood (1996) 87(5):2005–2010.
  • DINAUER MC, LI LL, BJORGVINSDOTTIR H, DING C, PECH N: Long-term correction of phagocyte NADPH wddase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood (1999) 94(3):914–922.
  • PAWLIUK R, EAVES C, HUMPHRIES K: Sustained high-level reconstitution of the hematopoietic system of preselected hematopoietic cells expressing a transduced cell-surface antigen. Hum. Gene The]: (1997) 8:1595–1604.
  • PERSONS DA, ALLAY ER, RIBERDY JM et al.: Use of green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells. Nat. Med. (1998) 4:1201–1205.
  • BONINI C, GREZ M, TRAVERSARI C et al.: Safety of retroviral gene marking with a truncated NGF receptor. Nat. Med. (2003) 9(4):367–369.
  • DEOLA S, SCARAMUZZA S, BIROLO RS et al.: Mobilized blood CD34+ cells transduced and selected with a clinically applicable protocol reconstitute lymphopoiesis in SCID-Hu mice. Hum. Gene The]: (2004) 15(3):305–311.
  • SADAT MA, PECH N, SAULNIER S et al.: Long-term high-level reconstitution of NADPH wddase activity in murine X-linked chronic granulomatous disease using a bicistronic vector expressing gp91Phar and a ALNGFR cell surface marker. Hum. Gene The]: (2003) 14(7):651–666.
  • •An important paper on long-term reconstitution of NADPH oxidase activity using preselected transduced cells for transplantation of X-CGD knockout mice.
  • LIZ, DULLMANN J, SCHIEDLMEIER B et al.: Murine leukemia induced by retroviral gene marking. Science (2002) 296(5567):497.
  • GOEBEL WS, DINAUER MC: Gene therapy for chronic granulomatous disease. Acta Haematol (2003) 110(2-3):86–92.
  • GOEBEL WS, DINAUER MC: Retroviral-mediated gene transfer and nonmyeloablative conditioning: studies in a murine X-linked chronic granulomatous disease model. Pediatr. Hematol Oncol (2002) 24(9):787–790.
  • GOEBEL WS, TRAVERS JB, PECH N, DINAUER MC: Retroviral mediated gene transfer (RMGT) reduces cutaneous inflammation and granuloma formation in a murine model of X-linked chronic granulomatous disease (X-CGD). Blood (2001) 98(11):695a.
  • MALECH HL, MAPLES PB, WHITING-THEOBALD N et al.: Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sri. USA (1997) 94(22):12133–12138.
  • ••The first report of a Phase I gene therapytrial in CGD patients.
  • MALECH H, HORWITZ ME, LINTON GF et al.: Extended production of wddase normal neutrophils in X-linked chronic granulomatous disease following gene therapy with gp91Phar transduced CD34+ cells. Blood (1998) 92\(Suppl. 1):690a.
  • SCHRODER AR, SHINN P, CHEN H et al: HIV-1 integration in the human genome favors active genes and local hotspots. Cell (2002) 11O(4):521–529.
  • WU X, LI Y, CRISE B, BURGESS SM: Transcription start regions in the human genome are favored targets for MLV integration. Science (2003) 300(5626):1749–1751.
  • CORNETTA K: Safety aspects of gene therapy. Br. J. Haematol (1992) 80(4):421–426.
  • DONAHUE RE, KESSLER SW, BODINE D et al.: Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. (1992) 176(4):1125–1135.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al: LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302(5644):415–419.
  • WILLIAMS DA, BAUM C: Medicine. Gene therapy-new challenges ahead. Science (2003) 302(5644):400–401.
  • VASSILOPOULOS G, JOSEPHSON NC, TROBRIDGE G: Development of foamy virus vectors. Methods MM. Med. (2003) 76:545–564.
  • SCHMIDT M, GLIMM H, WISSLER M et al.: Efficient characterization of retro-, lenti-, and foamyvector-transduced cell populations by high-accuracy insertion site sequencing. Ann. NY Acad. Sri. (2003) 996:112–121.
  • LEURS C, JANSEN M, POLLOK KE et al.: Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum. Gene Ther. (2003) 14(6):509–519.
  • ALI M, TAYLOR GP, PITMAN RJ et al: No evidence of antibody to human foamy virus in widespread human populations. AIDS Res. Hum. Removiruses (1996) 12(15):1473–1483.
  • JOSEPHSON NC, TROBRIDGE G, RUSSELL DW: Transduction of long-term and mobilized peripheral blood-derived NOD/SCID repopulating cells by foamy virus vectors. Hum. Gene Ther. (2004) 15(1):87–92.
  • GOEBEL WS, YODER MC, PECH NK, DINAUER MC: Donor chimerism and stem cell function in a murine congenic transplantation model after low-dose radiation conditioning: effects of a retroviral-mediated gene transfer protocol and implications for gene therapy. Exp. Hematol (2002) 30(11):1324–1332. Ica KURAMOTO K, FOLLMAN D, HEMATTI P et al.: The impact of low-dose busulfan on clonal dynamics in non-human primates. Blood (2004) (In Press).
  • SUGIMOTO Y, TSUKAHARA S, SATO S et al.: Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDR1-bicistronic retrovirus vector Ha-MDR-IRES-gp91. J. Gene Med. (2003) 5(5):366–376.
  • PERSONS DA, ALLAY JA, BONIFACINO A et al.: Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood (2004) 103(3):796–803.
  • GERSON SL: MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev Cancer (2004) 4(4):296–307.
  • ALLAY JA, PERSONS DA, GALIPEAU J et al.: In vivo selection of retrovirally transduced hematopoietic stem cells. Nat. Med. (1998) 4(10):1136–1143.
  • POLLOK KE, HARTWELL JR, BRABER A et al: In vivo selection of human hematopoietic cells in a xenograft model using combined pharmacologic and genetic manipulations. Hum. Gene Ther. (2003) 14(18):1703–1714.
  • BOWMAN JE, REESE JS, LINGAS KT, GERSON SL: Myeloablation is not required to select and maintain expression of the drug-resistance gene, mutant MGMT, in primary and secondary recipients. MM. Ther. (2003) 8(1):42–50.
  • PERSONS DA, ALLAY JA, BONIFACINO A et al: Transient M vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques transplanted with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood (2003) 103(3):796–803.
  • ZIELSKE SP, REESE JS, LINGAS KT, DONZE JR, GERSON SL: In vivo selection of MGMT (P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J. Clin. Invest. (2003) 112:1561–1570.
  • NEFF T, HORN PA, PETERSON LJ et al.: Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J. Clin. Invest. (2003) 112(101581–1588.
  • DAVIS BM, KOC ON, GERSON SL: Limiting numbers of G156A 06-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood(2000) 95(103078–3084.
  • ANTONCHUK J, SAUVAGEAU G, HUMPHRIES RK: HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell (2002) 109(1):39–45.
  • SAWAI N, PERSONS DA, ZHOU S, LU T, SORRENTINO BP: Reduction in hematopoietic stem cell numbers with in vivo drug selection can be partially abrogated by HOXB4 gene expression. Ther. (2003) 8(3):376–384.
  • RICHARD RE, WEINREICH M, CHANG KH et al.: Modulating erythrocyte chimerism in a mouse model of pyruvate kinase deficiency. Blood (2004) 103(12)4432–4439.
  • RICHARD RE, WOOD B, ZENG H et al.: Expansion of genetically modified primary human hemopoietic cells using chemical inducers of dimerization. Blood (2000) 95(2):430–436.
  • NEFF T, HORN PA, VALLI VE et al: Pharmacologically regulated in vivo selection in a large animal. Blood (2002) 100 (6) :2026–2031.
  • NAGASHIMA T, UEDA Y, HANAZONO Y et al.: In vivo expansion of gene-modified hematopoietic cells by a novel selective amplifier gene utilizing the erythropoietin receptor as a molecular switch. Gene Med. (2004) 6(1):22–31.
  • KUME A, KOREMOTO M, XU R et al: In vivo expansion of transduced murine hematopoietic cells with a selective amplifier gene. J. Gene Med. (2003) 5(3):175–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.