64
Views
5
CrossRef citations to date
0
Altmetric
Review

Resetting the functional capacity of regulatory T cells: a novel immunotherapeutic strategy to promote immune tolerance

&
Pages S73-S81 | Published online: 24 Nov 2005

Bibliography

  • SHEVACH EM: Regulatory T cells in autoimmmunity. Ann. Rev Immunol. (2000) 18:423–449.
  • SHEVACH EM: CD4' CD25' suppressor T cells: more questions than answers. Nat. Rev Immunol. (2002) 2:389–400.
  • SAKAGUCHI S: Naturally arising CD4' regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev Immunol. (2004) 22:531–562.
  • MASON D, POWRIE F: Control of immune pathology by regulatory T cells. Curr. Opin. Immunol. (1998) 10:649–655.
  • BACH JF, CHATENOUD L: Tolerance to islet autoantigens in Type 1 diabetes. Ann. Rev. Immunol. (2001) 19:131–161.
  • BACH JF: Regulatory T cells under scrutiny. Nat. Rev Immunol. (2003) 3:189–198.
  • SALOMON B, LENSCHOW DJ, RHEE L et al.: B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity (2000) 12:431–440.
  • COBBOLD SP, ADAMS E, GRACA L, WALDMANN H: Serial analysis of gene expression provides new insights into regulatory T cells. Sernin. Immunol. (2003) 15:209–214.
  • BLUESTONE JA, ABBAS AK: Natural versus adaptive regulatory T cells. Nat. Rev Immunol. (2003) 3:253–257.
  • GERSHON RK, KONDO K: Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology (1970) 18:723–737.
  • GERSHON RK, KONDO K: Infectious immunological tolerance. Immunology (1971) 21:903–914.
  • MOSMANN TR, COFFMAN RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. AMU. Rev Immunol. (1989) 7:145–173.
  • LIBLAU RS, SINGER SM, MCDEVITT HO: Thl and Th2 CD4+ Tcells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today (1995) 16:34–38.
  • TISCH R, WANG B, SERREZE DV: Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. (1999) 163:1178–1187.
  • LEPAULT F, GAGNERAULT MC: Characterization of peripheral regulatory CD4(+) T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. (2000) 164:240–247.
  • BACH JF, CHATENOUD L: Tolerance to islet autoantigens and Type I diabetes. Ann. Rev Immunol. (001) 19:131–161.
  • MCCULLAGH P: Curtailment of autoimmunity following parabiosis with a normal partner. Immunology (1990) 71:595–597.
  • KHOURY SJ, HANCOCK WW, WEINER HL: Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, IL-4, and prostaglandin E expression in the brain. J. Exp. Med. (1992) 176:1355–1364.
  • DANIEL D, GILL RG, SCHLOOT N, WEGMANN D: Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. Immunol. (1995) 25:1056–1062.
  • WEGMANN DR, NORBURY- GLASER M, DANIEL D: Insulin-specific T cells are a predominant component of islet infiltrates in prediabetic NOD mice. Eur. Immunol. (1994) 24:1853–1857.
  • DANIEL D, WEGMANN DR: Intranasal administration of insulin peptide B: 9-23 protects NOD mice from diabetes. Ann. NY Acad. Sci. (1996) 778:371–372.
  • ATKINSON MA, MACLAREN NK, LUCHETTA R: Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes (1990) 39:933–937.
  • FRENCH MB, ALLISON J, CRAM DS et al.: Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes (1997) 46:34–39.
  • HONEYMAN MC, CRAM DS, HARRISON LC: Glutamic acid decarboxylase 67-reactive T cells: a marker of insulin-dependent diabetes. I Exp. Med. (1993) 177:535–540.
  • PANINA-BORDIGNON PR, LANG PM, VAN ENDERT E et al.: Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J. Exp. Med. (1995) 181:1923–1927.
  • TISCH R, YANG XD, SINGER SM, LIBLAU RS, FUGGER L, MCDEVITT HO: Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature (1993) 366:72–75.
  • TREMBLEAU S, PENNA G, GREGORI S, GATELY MK, ADORINI L: Deviation of pancreas-infiltrating cells to Th2 by interleukin-12 antagonist administration inhibits autoimmune diabetes. Eur. Immunol. (1997) 27:2330–2339.
  • HAWKES CJ, WASMEIER C, CHRISTIE MR, HUTTON JC: Identification of the 37-kDa antigen in IDDM as a tyrosine phosphatase-like protein (phogriM related to IA-2. Diabetes (1996) 45:1187–1192.
  • DOTTA F, DIONISI S, VIGLIETTA V et al.: T cell mediated autoimmunity to the insulinoma-associated protein 2 islet tyrosine phosphatase in Type 1 diabetes mellitus. Eur. Endocrinol. (1999) 141:272–278.
  • HAWA M, ROWER, LAN MS et al.: Valueof antibodies to islet protein tyrosine phosphatase-like molecule in predicting Type 1 diabetes. Diabetes (1997) 46:1270–1275.
  • ELIAS D, MARKOVITS D, RESHEF T, VAN DER ZEE R, COHEN IR: Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/L0 mouse by a 65-1(Da heat-shock protein. Proc. Nati Acad. Sci. USA (1990) 87:1576–1580.
  • ELIAS D, COHEN IR: Peptide therapy for diabetes in NOD mice. Lancet (1994) 343:704–706.
  • BIRK OS, DOUEK DC, ELIAS D et al.: Arole of hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc. Nati Acad. ScL USA (1996) 93:1032–1037.
  • ELIAS D, MEILIN A, ABLAMUNITS V et al.: Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes (1997) 46:758–764.
  • SERREZE DV, CHAPMAN HD, VARNUM DS et al.: B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new 'speed congenic' stock of NOD.Ig mu(null) mice. I Exp. Med. (1996) 184:2049–2053.
  • AKASHI T, NAGAFUCHI S, ANZAI K et al.: Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int. Immunol. (1997) 9:1159–1164.
  • NOORCHASHM H, LIEU YK, NOORCHASHM N et al.: I-ag7-mediated antigen presentation by 13 lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J. Immunol. (1999) 163:743–750.
  • YU LP, REWERS M, GIANANI R et al.:Anti-islet autoantibodies usually develop sequentially rather than simultaneously. J. Clin. Endocrinol. Metab. (1996) 81:4264–4267.
  • BACH JF: Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Rev (1994) 15:516–542.
  • DEBRAY-SACHS MC, CARNAUD C, BOITARD H et al.: Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. I Autoimmun. (1991) 4:237–248.
  • WANG Y, HAO L, GILL RG, LAFFERTY KJ: Autoimmune diabetes in NOD mouse is L3T4 T lymphocyte dependent. Diabetes (1987) 36:535–538.
  • RAPOPORT MJ, JARAMILLO A, ZIPRIS D et al.: IL-4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. I Exp. Med. (1993) 178:87–99.
  • PENNLINE KJ, ROQUE-GAFFNEY E, MONAHAN M: Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin. Immunol. Immunopathol. (1994) 71:169–175.
  • ZAC CONE P, PHILLIPS J, CONGET Iet al.: Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes (1999) 48:1522–1528.
  • TIAN JD, CLARESALZLER M, HERSCHENFELD A et al.: Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes- prone mice. Nat. Med. (1996) 2:1348–1353.
  • TIAN J, ATKINSON MA, CLARE SALZLER M et al.: Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. I Exp. Med. (1996) 183:1561–1567.
  • AL-SABBAGH A, MILLER A, SANTOS LM, WEINER HL: Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. Immunol. (1994) 24:2104–2109.
  • TIAN J, LEHMANN PH, KAUFMAN DL: Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens../. Exp. Med. (1997) 186:2039–2043.
  • WANG B, GONZALEZ A, HOGLUND P, KATZ PD, BENOIST C, MATHIS D: Interleukin-4 deficiency does not exacerbate disease in NOD mice. Diabetes (1998) 47:1207–1211.
  • CALCINARO F, GAMBELUNGHE G, LAFFERTY KJ: Protection from autoimmune diabetes by adjuvant therapy in the non-obese diabetic mouse: the role of interleukin-4 and interleukin-10. Immunol. Cell Biol. (1997) 75:467–471.
  • QIN HY, SADELAIN MW, HITCHON C, LAUZON J, SINGH B: Complete Freund's adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. ./. Immunol. (1993) 150:2072–2080.
  • BOITARD C, YASUNAMI R, DARDENNE M, BACH JF: T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. I Exp. Med. (1989) 169:1669–1680.
  • HUTCHINGS PR, COOKE A: The transfer of autoimmune diabetes in NOD mice can be inhibited or accelerated by distinct cell populations present in normal splenocytes taken from young males. J.Autoimmun. (1990) 3:175–185.
  • YASUNAMI R, DEBRAY-SACHS M, BACH JF: Ontogeny of regulatory and effector T cells in autoimmune NOD mice. In: Frontiers in Diabetes Research. Lessons from Animal Diabetes III Shafrir E (Ed.), Smith-Gordon, London. (1990):88–93.
  • LEPAULT F, GAGNERAULT MC, FAVEEUW C, BAZIN H, BOITARD C: Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur. Immunol. (1995) 25:1502–1507.
  • BENDELAC A, CARNAUD C, BOITARD C, BACH JF: Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4* and Lyt-2' T cells. J. Exp. Med. (1987) 166:823–832.
  • WICKER LS, MILLER BJ, MULLEN Y: Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes (1986) 35:855–860.
  • SEMPE P, RICHARD MF, BACH JF, BOITARD C: Evidence of CD4* regulatory T cells in the non-obese diabetic male mouse. Diabetologia (1994) 37:337–343.
  • CHATENOUD L, SALOMON B, BLUESTONE JA: Suppressor T cells-they're back and critical for regulation of autoimmunity! Immunol. Rev (2001) 182:149–163.
  • ASKENASE PW, HAYDEN BJ, GERSHON RK: Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J. Exp. Med. (1975) 141:697–702.
  • MINAGAWA H, TAKENAKA A, ITOYAMA Y, MORI R: Experimental allergic encephalomyelitis in the Lewis rat. A model of predictable relapse by cyclophosphamide. Neurol. ScL (1987) 78:225–235.
  • MIYAZAKI C, NAKAMURA T, KANEKO K, MORI R, SHIBASAKI H: Reinduction of experimental allergic encephalomyelitis in convalescent Lewis rats with cyclophosphamide. I Neurol. Li. (1985) 67:277–284.
  • MCKENNA RM, CARTER BG, SEHON AH: Studies on the mechanism of suppression of experimental allergic encephalomyelitis induced by myelin basic protein-cell conjugates. Cell. Immunol. (1984) 88:251–259.
  • KARDYS E, HASHIM GA: Experimental allergic encephalomyelitis in Lewis rats: immunoregulation of disease by a single amino acid substitution in the disease-inducing determinant. I Iminunol (1981) 127:862–866.
  • CHARLTON B, BACELJ A, SLATTERY RM, MANDEL TE: Cyclophosphamide-induced diabetes in NOD/WEHI mice. Evidence for suppression in spontaneous autoimmune diabetes mellitus. Diabetes (1989) 38:441–447.
  • YASUNAMI R, BACH JF: Antisuppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. I Inununol. (1988) 18:481–484.
  • MAHIOU J, WALTER U, LEPAULT F, GODEAU F, BACH JF, CHATENOUD L: In vivo blockade of the Fas-Fas ligand pathway inhibits cyclophosphamide-induced diabetes in NOD mice. Autoinunun. (2001) 16:431–440.
  • DARDENNE M, LEPAULT F, BENDELAC A, BACH JF: Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning. Eur. Inununol. (1989) 19:889–895.
  • HERBELIN A, GOMBERT JM, LEPAULT F, BACH JF, CHATENOUD L: Mature mainstream TCR alpha beta(-0CD4(-0 thymocytes expressing L-selectin mediate 'active tolerance' in the nonobese diabetic mouse.' Inununol.(1998) 161:2620–2628.
  • SAKAGUCHI S: Regulatory T cells: keycontrollers of immunologic self- tolerance. Cell (2000) 101:455–458.
  • LENSCHOW DJ, HEROLD KC, RHEE L et al: CD281137 regulation of Thl and Th2 subsets in the development of autoimmune diabetes. Inununio, (1996) 5:285–293.
  • ALYANAKIAN MA, YOU S, DAMOTTE D et al.: Diversity of regulatory CDEVT cells controlling distinct organ-specific autoimmune diseases. Proc. Natl. Acad. Sci. USA (2003) 100:15806–15811.
  • CLEVERS H, ALARCON B, WILEMAN T, TERHORST TC: The T cell receptor/CD3 complex: a dynamicprotein ensemble. AMU. Rev Inonunol. (1998) 6:629–662.
  • DAVIS MM, CHIEN YH: T cell antigenreceptors. In: Fundamental Immunology Paul W (Ed.), Raven Press, New York. (1999):341–366.
  • KUNG P, GOLDSTEIN G, REINHERZ EL, SCHLOSSMAN SF: Monoclonal antibodies defining distinctive human T cell surface antigens. Sdence (1988) 206:347–349.
  • COSIMI AB, BURTON RC, COLVIN RB et al: Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation (1981) 32:535–539.
  • DEBURE A, CHKOFF N, CHATENOUD L et al.: One-month prophylactic use of OKT3 in cadaver kidney transplant recipients. Transplantation (1988) 45:546–553.
  • VIGERAL P, CHKOFF N, CHATENOUD L et al: Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation (1986) 41:730–733.
  • LEO 0, FOO M, SACHS DH, SAMELSON LE, BLUESTONE JA: Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Nati Acad. Li. USA (1987) 84:1374–1378.
  • COSIMI AB, COLVIN RB, BURTON RC et al: Use of monoclonal antibodies to T cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. (1981) 305:308-314. 81.ORTHO X: A randomized clinical trial ofOKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. Ortho Multicenter Transplant Study Group. N Engl. I Med. (1985) 313:337–342.
  • CHATENOUD L: CD3-specific antibody-induced active tolerance: from bench to bedside. Nat. Rev Inonunol. (2003) 3:123–132.
  • CHATENOUD L, BAUDRIHAYE MF, CHKOFF N, KREIS H, GOLDSTEIN G, BACH JF: Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. I Inununol. (1986) 137:830–838.
  • CHATENOUD L, FERRAN C, LEGENDRE C et al: In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation (1990) 49:697–702.
  • CHATENOUD L, FERRAN C, REUTER A et al: Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumour necrosis factor and interferon-gamma. N Engl. J. Med. (1989) 320:1420–1421.
  • COSIMI AB: Clinical development of orthoclone OKT3. Transplant. Proc. (1987) 19:7–16.
  • ABRAMOWICZ D, SCHANDENE L, GOLDMAN M et al.: Release of tumour necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation (1989) 47:606–608.
  • EASON JD, COSIMI AB: Biologic immunosuppressive agents. In: Transplantation. Ginns L, Cosimi A, Morris P (Eds), Blackwell Science, Malden, USA. (1999):196–224.
  • NICOLLS MR, AVERSA GG, PEARCE NW et al.: Induction of long-term specific tolerance to allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation (1993) 55:459–468.
  • PLAIN KM, CHEN J, MERTEN S, HE XY, HALL BM: Induction of specific tolerance to allografts in rats by therapy with non-mitogenic, non-depleting anti-CD3 monoclonal antibody: association with TH2 cytokines not ariergy. Transplantation (1999) 67:605–613.
  • HAYWARD AR, SHREIBER M: Neonatal injection of CD3 antibody into nonobese diabetic mice reduces the incidence of insulitis and diabetes. J. Iminunol (1989) 143:1555–1559.
  • BELGHITH M, BLUESTONE JA, BARRIOT S, MEGRET J, BACH JF, CHATENOUD L: TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. (2003) 9:1202–1208.
  • CHATENOUD L, THERVET E, PRIMO J, BACH JF: Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA (1994) 91:123–127.
  • CHATENOUD L, PRIMO J, BACH JF: CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. Iminunol (1997) 158:2947–2954.
  • ALEGRE ML, PETERSON LJ, XU D et al.: A non-activating 'humanized' anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation (1994) 57:1537–1543.
  • BOLT S, ROUTLEDGE E, LLOYD I et al.: The generation of a humanized, non-mitogenic CD3 monoclonal antibodyc Expert Op/n. Biol. Ther. (2005) 5\(Supp1.1) which retains in vitro immunosuppressive properties. Eur. I Inununol. (1993) 23:403–411.
  • FRIEND PJ, HALE G, CHATENOUD L et al.: Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation (1999) 68: 1632-1637.
  • WOODLE ES, XU D, ZIVIN RA et al: Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gammal (Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation (1999) 68:608–616.
  • HEROLD KC, HAGOPIAN W, AUGER JA et al: Anti-CD3 monoclonal antibody in new-onset Type 1 diabetes mellitus. N Engl. J. Med. (2002) 346:1692–1698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.