98
Views
20
CrossRef citations to date
0
Altmetric
Review

Cellular repair strategies for spinal cord injury

&
Pages 639-652 | Published online: 29 Jun 2006

Bibliography

  • QIU J, CAI D, FILBIN MT: A role for cAMP in regeneration during development and after injury. Prog. Brain Res. (2002) 137:381-387.
  • CHIERZI S, RATTO GM, VERMA P, FAWCETT JW: The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur. J. Neurosci. (2005) 21(8):2051-2062.
  • EATON MJ, WHITTEMORE SR: Autocrine BDNF secretion enhances the survival and serotonergic differentiation of raphe neuronal precursor cells grafted into the adult rat CNS. Exp. Neurol. (1996) 140(2):105-114.
  • GIEHL KM, TETZLAFF W: BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur. J. Neurosci. (1996) 8(6):1167-1175.
  • HIEBERT GW, KHODARAHMI K, MCGRAW J, STEEVES JD, TETZLAFF W: Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J. Neurosci. Res. (2002) 69(2):160-168.
  • YE JH, HOULE JD: Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp. Neurol. (1997) 143(1):70-81.
  • STORER PD, DOLBEARE D, HOULE JD: Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons. J. Neurosci. Res. (2003) 74(4):502-511.
  • HOULE JD, YE JH: Survival of chronically-injured neurons can be prolonged by treatment with neurotrophic factors. Neuroscience (1999) 94(3):929-936.
  • MERKLER D, METZ GA, RAINETEAU O, DIETZ V, SCHWAB ME, FOUAD K: Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J. Neurosci. (2001) 21(10):3665-3673.
  • LI S, LIU BP, BUDEL S et al.: Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J. Neurosci. (2004) 24(46):10511-10520.
  • BRADBURY EJ, MOON LD, POPAT RJ et al.: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature (2002) 416(6881):636-640.
  • LI Y, RAISMAN G: Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord. Exp. Neurol. (1997) 145(2 Pt 1):397-411.
  • XU XM, ZHANG SX, LI H, AEBISCHER P, BUNGE MB: Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. (1999) 11(5):1723-1740.
  • LU P, JONES LL, TUSZYNSKI MH: BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp. Neurol. (2005) 191(2):344-360.
  • CAO Q, XU XM, DEVRIES WH et al.: Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. (2005) 25(30):6947-6957.
  • RUITENBERG MJ, PLANT GW, CHRISTENSEN CL et al.: Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Ther. (2002) 9(2):135-146.
  • RUITENBERG MJ, EGGERS R, BOER GJ, VERHAAGEN J: Adeno-associated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system. Methods (2002) 28(2):182-194.
  • AKIYAMA Y, HONMOU O, KATO T, UEDE T, HASHI K, KOCSIS JD: Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp. Neurol. (2001) 167(1):27-39.
  • LEPORE AC, BAKSHI A, SWANGER SA, RAO MS, FISCHER I: Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res. (2005) 1045(1-2):206-216.
  • CAO QL, HOWARD RM, DENNISON JB, WHITTEMORE SR: Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp. Neurol. (2002) 177(2):349-359.
  • REIER PJ: Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx. (2004) 1(4):424-451.
  • BUNGE MB, PEARSE DD: Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. (2003) 40(4 Suppl. 1):55-62.
  • BLITS B, BOER GJ, VERHAAGEN J: Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. (2002) 11(6):593-613.
  • PEARSE DD, PEREIRA FC, MARCILLO AE et al.: cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. (2004) 10(6):610-616.
  • REIER PJ, HOULE JD, JAKEMAN L, WINIALSKI D, TESSLER A: Transplantation of fetal spinal cord tissue into acute and chronic hemisection and contusion lesions of the adult rat spinal cord. Prog. Brain Res. (1988) 78:173-179.
  • BUNGE MB: Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J. Neurol. (1994) 242(1 Suppl. 1):S36-S39.
  • MARTIN D, ROBE P, FRANZEN R et al.: Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J. Neurosci. Res. (1996) 45(5):588-597.
  • PLANT GW, CHRISTENSEN CL, OUDEGA M, BUNGE MB: Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J. Neurotrauma (2003) 20(1):1-16.
  • BARBER PC, RAISMAN G: An autoradiographic investigation of the projection of the vomeronasal organ to the accessory olfactory bulb in the mouse. Brain Res. (1974) 81(1):21-30.
  • RAMON-CUETO A: Olfactory ensheathing glia transplantation into the injured spinal cord. Prog. Brain Res. (2000) 128:265-272.
  • SASAKI M, HONMOU O, AKIYAMA Y, UEDE T, HASHI K, KOCSIS JD: Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia (2001) 35(1):26-34.
  • WU S, SUZUKI Y, EJIRI Y et al.: Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J. Neurosci. Res. (2003) 72(3):343-351.
  • PARK KI, LIU S, FLAX JD, NISSIM S, STIEG PE, SNYDER EY: Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J. Neurotrauma (1999) 16(8):675-687.
  • VROEMEN M, AIGNER L, WINKLER J, WEIDNER N: Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur. J. Neurosci. (2003) 18(4):743-751.
  • HILL CE, PROSCHEL C, NOBLE M et al.: Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Exp. Neurol. (2004) 190(2):289-310.
  • BREGMAN BS, REIER PJ: Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J. Comp. Neurol. (1986) 244(1):86-95.
  • REIER PJ, STOKES BT, THOMPSON FJ, ANDERSON DK: Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp. Neurol. (1992) 115(1):177-188.
  • CHENG H, CAO Y, OLSON L: Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science (1996) 273(5274):510-513.
  • RAMON-CUETO A, PLANT GW, AVILA J, BUNGE MB: Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. (1998) 18(10):3803-3815.
  • DUNCAN ID, HAMMANG JP, JACKSON KF, WOOD PM, BUNGE RP, LANGFORD L: Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J. Neurocytol. (1988) 17(3):351-360.
  • MARCONDES MC, FURTADO GC, WENSKY A, CUROTTO DE LAFAILLE MA, FOX HS, LAFAILLE JJ: Immune regulatory mechanisms influence early pathology in spinal cord injury and in spontaneous autoimmune encephalomyelitis. Am. J. Pathol. (2005) 166(6):1749-1760.
  • HALL ED, BRAUGHLER JM: Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. Cent. Nerv. Syst. Trauma (1986) 3(4):281-294.
  • DUGAN LL, CHOI DW: Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. (1994) 35(Suppl.):S17-S21.
  • REIER PJ, HOULE JD: The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. (1988) 47:87-138.
  • SCHNEIDER GE: Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav. Evol. (1970) 3(1):295-323.
  • SCHNEIDER GE: Functional recovery after lesions of the nervous system. 3. Developmental processes in neural plasticity. Anomalous axonal connections implicated in sparing and alteration of function after early lesions. Neurosci. Res. Program. Bull. (1974) 12(2):222-227.
  • GOLDBERG JL, ESPINOSA JS, XU Y, DAVIDSON N, KOVACS GT, BARRES BA: Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron (2002) 33(5):689-702.
  • WALLACE MC, TATOR CH, LEWIS AJ: Chronic regenerative changes in the spinal cord after cord compression injury in rats. Surg. Neurol. (1987) 27(3):209-219.
  • SILVER J, MILLER JH: Regeneration beyond the glial scar. Nat. Rev. Neurosci. (2004) 5(2):146-156.
  • MORRISSEY TK, KLEITMAN N, BUNGE RP: Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J. Neurosci. (1991) 11(8):2433-2442.
  • RAPALINO O, LAZAROV-SPIEGLER O, AGRANOV E et al.: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. (1998) 4(7):814-821.
  • PERRY VH, BROWN MC, GORDON S: The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. (1987) 165(4):1218-1223.
  • PERRY VH, GORDON S: Macrophages and microglia in the nervous system. Trends Neurosci. (1988) 11(6):273-277.
  • LOTAN M, SCHWARTZ M: Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. (1994) 8(13):1026-1033.
  • LOTAN M, SOLOMON A, BEN-BASSAT S, SCHWARTZ M: Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammalian central nervous system. Exp. Neurol. (1994) 126(2):284-290.
  • STEIN VM, CZUB M, SCHREINER N et al.: Microglial cell activation in demyelinating canine distemper lesions. J. Neuroimmunol. (2004) 153(1-2):122-131.
  • BEATTIE MS, HERMANN GE, ROGERS RC, BRESNAHAN JC: Cell death in models of spinal cord injury. Prog. Brain Res. (2002) 137:37-47.
  • AVELLINO AM, HART D, DAILEY AT, MACKINNON M, ELLEGALA D, KLIOT M: Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp. Neurol. (1995) 136(2):183-198.
  • DAVID S, BOUCHARD C, TSATAS O, GIFTOCHRISTOS N: Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron (1990) 5(4):463-469.
  • CARONI P, SAVIO T, SCHWAB ME: Central nervous system regeneration: oligodendrocytes and myelin as non-permissive substrates for neurite growth. Prog. Brain Res. (1988) 78:363-370.
  • GIULIAN D, CHEN J, INGEMAN JE, GEORGE JK, NOPONEN M: The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J. Neurosci. (1989) 9(12):4416-4429.
  • FRANZEN R, SCHOENEN J, LEPRINCE P, JOOSTEN E, MOONEN G, MARTIN D: Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J. Neurosci. Res. (1998) 51(3):316-327.
  • BOMSTEIN Y, MARDER JB, VITNER K et al.: Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J. Neuroimmunol. (2003) 142(1-2):10-16.
  • LAZAROV-SPIEGLER O, SOLOMON AS, ZEEV-BRANN AB, HIRSCHBERG DL, LAVIE V, SCHWARTZ M: Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. (1996) 10(11):1296-1302.
  • IDE C: Peripheral nerve regeneration. Neurosci. Res. (1996) 25(2):101-121.
  • ACHESON A, BARKER PA, ALDERSON RF, MILLER FD, MURPHY RA: Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron (1991) 7(2):265-275.
  • RENDE M, MUIR D, RUOSLAHTI E, HAGG T, VARON S, MANTHORPE M: Immunolocalization of ciliary neuronotrophic factor in adult rat sciatic nerve. Glia (1992) 5(1):25-32.
  • NIEKE J, SCHACHNER M: Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve. Differentiation (1985) 30(2):141-151.
  • LEMMON V, FARR KL, LAGENAUR C: L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron (1989) 2(6):1597-1603.
  • BURDEN-GULLEY SM, PENDERGAST M, LEMMON V: The role of cell adhesion molecule L1 in axonal extension, growth cone motility, and signal transduction. Cell Tissue Res. (1997) 290(2):415-422.
  • DUNCAN ID, AGUAYO AJ, BUNGE RP, WOOD PM: Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J. Neurol. Sci. (1981) 49(2):241-252.
  • BLAKEMORE WF, CRANG AJ, EVANS RJ, PATTERSON RC: Rat Schwann cell remyelination of demyelinated cat CNS axons: evidence that injection of cell suspensions of CNS tissue results in Schwann cell remyelination. Neurosci. Lett. (1987) 77(1):15-19.
  • BLAKEMORE WF, CRANG AJ, PATTERSON RC: Schwann cell remyelination of CNS axons following injection of cultures of CNS cells into areas of persistent demyelination. Neurosci. Lett. (1987) 77(1):20-24.
  • WOOD PM: Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. (1976) 115(3):361-375.
  • STICHEL CC, HERMANNS S, LAUSBERG F, MULLER HW: Effects of Schwann cell suspension grafts on axon regeneration in subacute and chronic CNS traumatic injuries. Glia (1999) 28(2):156-165.
  • KROMER LF, CORNBROOKS CJ: Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc. Natl. Acad. Sci. USA (1985) 82(18):6330-6334.
  • HARVEY AR, PLANT GW, TAN MM: Schwann cells and the regrowth of axons in the mammalian CNS: a review of transplantation studies in the rat visual system. Clin. Exp. Pharmacol. Physiol. (1995) 22(8):569-579.
  • WARDROPE J, WILSON DH: Peripheral nerve grafting in the spinal cord: a histological and electrophysiological study. Paraplegia (1986) 24(6):370-378.
  • PEARSE DD, MARCILLO AE, OUDEGA M, LYNCH MP, WOOD PM, BUNGE MB: Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J. Neurotrauma (2004) 21(9):1223-1239.
  • BARAKAT DJ, GAGLANI SM, NERAVETLA SR et al.: Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. (2005) 14(4):225-240.
  • DAVID S, AGUAYO AJ: Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats. Science (1981) 214(4523):931-933.
  • RICHARDSON PM, MCGUINNESS UM, AGUAYO AJ: Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods. Brain Res. (1982) 237(1):147-162.
  • BROCKES JP, FIELDS KL, RAFF MC: Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. (1979) 165(1):105-118.
  • XU XM, GUENARD V, KLEITMAN N, BUNGE MB: Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. (1995) 351(1):145-160.
  • TAKAMI T, OUDEGA M, BATES ML, WOOD PM, KLEITMAN N, BUNGE MB: Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. (2002) 22(15):6670-6681.
  • NAKAMURA M, HOUGHTLING RA, MACARTHUR L, BAYER BM, BREGMAN BS: Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp. Neurol. (2003) 184(1):313-325.
  • FISHMAN PS, NILAVER G, KELLY JP: Astrogliosis limits the integration of peripheral nerve grafts into the spinal cord. Brain Res. (1983) 277(1):175-180.
  • LAKATOS A, BARNETT SC, FRANKLIN RJ: Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp. Neurol. (2003) 184(1):237-246.
  • PLANT GW, BATES ML, BUNGE MB: Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol. Cell Neurosci. (2001) 17(3):471-487.
  • MEIJS MF, TIMMERS L, PEARSE DD et al.: Basic fibroblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord. J. Neurotrauma (2004) 21(10):1415-1430.
  • XU XM, GUENARD V, KLEITMAN N, AEBISCHER P, BUNGE MB: A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp. Neurol. (1995) 134(2):261-272.
  • BOYD JG, SKIHAR V, KAWAJA M, DOUCETTE R: Olfactory ensheathing cells: historical perspective and therapeutic potential. Anat. Rec. B New Anat. (2003) 271(1):49-60.
  • LI Y, FIELD PM, RAISMAN G: Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science (1997) 277(5334):2000-2002.
  • FERON F, PERRY C, COCHRANE J et al.: Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain (2005) 128(Pt 12):2951-2960.
  • CARR VM, FARBMAN AI: The dynamics of cell death in the olfactory epithelium. Exp. Neurol. (1993) 124(2):308-314.
  • BARBER PC: Neurogenesis and regeneration in the primary olfactory pathway of mammals. Bibl. Anat. (1982) (23):12-25.
  • IMAIZUMI T, LANKFORD KL, WAXMAN SG, GREER CA, KOCSIS JD: Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J. Neurosci. (1998) 18(16):6176-6185.
  • FRANKLIN RJ, GILSON JM, FRANCESCHINI IA, BARNETT SC: Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia (1996) 17(3):217-224.
  • PLANT GW, CURRIER PF, CUERVO EP et al.: Purified adult ensheathing glia fail to myelinate axons under culture conditions that enable Schwann cells to form myelin. J. Neurosci. (2002) 22(14):6083-6091.
  • VINCENT AJ, TAYLOR JM, CHOI-LUNDBERG DL, WEST AK, CHUAH MI: Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia (2005) 51(2):132-147.
  • LAKATOS A, FRANKLIN RJ, BARNETT SC: Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia (2000) 32(3):214-225.
  • RAMON-CUETO A, CORDERO MI, SANTOS-BENITO FF, AVILA J: Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron (2000) 25(2):425-435.
  • LU J, FERON F, HO SM, KAY-SIM A, WAITE PM: Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res. (2001) 889(1-2):344-357.
  • RUITENBERG MJ, PLANT GW, HAMERS FP et al.: Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J. Neurosci. (2003) 23(18):7045-7058.
  • RUITENBERG MJ, LEVISON DB, LEE SV, VERHAAGEN J, HARVEY AR, PLANT GW: NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain (2005) 128(Pt 4):839-853.
  • BUNGE MB: Bridging the transected or contused adult rat spinal cord with Schwann cell and olfactory ensheathing glia transplants. Prog. Brain Res. (2002) 137:275-282.
  • BOYD JG, LEE J, SKIHAR V, DOUCETTE R, KAWAJA MD: LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc. Natl. Acad. Sci. USA (2004) 101(7):2162-2166.
  • DEUMENS R, KOOPMANS GC, HONIG WM et al.: Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp. Neurol. (2006) (In Press).
  • LU J, FERON F, KAY-SIM A, WAITE PM: Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain (2002) 125(Pt 1):14-21.
  • BUNGE MB, SANCHEZ AR, PUZIS R et al.: Delayed transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration and axon association. The 35th Annual Meeting for the Society of Neuroscience. Washington DC, USA (12 – 16 November 2005).
  • BOYD JG, DOUCETTE R, KAWAJA MD: Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J. (2005) 19(7):694-703.
  • HOFSTETTER CP, SCHWARZ EJ, HESS D et al.: Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA (2002) 99(4):2199-2204.
  • PHINNEY DG, KOPEN G, ISAACSON RL, PROCKOP DJ: Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell Biochem. (1999) 72(4):570-585.
  • PEISTER A, MELLAD JA, LARSON BL, HALL BM, GIBSON LF, PROCKOP DJ: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood (2004) 103(5):1662-1668.
  • PHINNEY DG, ISAKOVA I: Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr. Pharm. Des. (2005) 11(10):1255-1265.
  • CHEN X, KATAKOWSKI M, LI Y et al.: Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res. (2002) 69(5):687-691.
  • CHEN X, LI Y, WANG L et al.: Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology (2002) 22(4):275-279.
  • CHOPP M, ZHANG XH, LI Y et al.: Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport (2000) 11(13):3001-3005.
  • ANKENY DP, MCTIGUE DM, JAKEMAN LB: Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp. Neurol. (2004) 190(1):17-31.
  • REIER PJ, ANDERSON DK, THOMPSON FJ, STOKES BT: Neural tissue transplantation and CNS trauma: anatomical and functional repair of the injured spinal cord. J. Neurotrauma (1992) 9(Suppl. 1):S223-S248.
  • BREGMAN BS, MCATEE M, DAI HN, KUHN PL: Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp. Neurol. (1997) 148(2):475-494.
  • BREGMAN BS, COUMANS JV, DAI HN et al.: Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog. Brain Res. (2002) 137:257-273.
  • MCDONALD JW, LIU XZ, QU Y et al.: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. (1999) 5(12):1410-1412.
  • MCDONALD JW, BECKER D, HOLEKAMP TF et al.: Repair of the injured spinal cord and the potential of embryonic stem cell transplantation. J. Neurotrauma (2004) 21(4):383-393.
  • KEIRSTEAD HS, NISTOR G, BERNAL G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. (2005) 25(19):4694-4705.
  • WU S, SUZUKI Y, KITADA M et al.: Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci. Lett. (2001) 312(3):173-176.
  • CHOW SY, MOUL J, TOBIAS CA et al.: Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res. (2000) 874(2):87-106.
  • OGAWA Y, SAWAMOTO K, MIYATA T et al.: Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. (2002) 69(6):925-933.
  • LEE KH, YOON DH, PARK YG, LEE BH: Effects of glial transplantation on functional recovery following acute spinal cord injury. J. Neurotrauma (2005) 22(5):575-589.
  • MAYER-PROSCHEL M, KALYANI AJ, MUJTABA T, RAO MS: Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron (1997) 19(4):773-785.
  • BAMBAKIDIS NC, MILLER RH: Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J. (2004) 4(1):16-26.
  • DOETSCH F, CAILLE I, LIM DA, GARCIA-VERDUGO JM, VAREZ-BUYLLA A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell (1999) 97(6):703-716.
  • PFEIFER K, VROEMEN M, BLESCH A, WEIDNER N: Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur. J. Neurosci. (2004) 20(7):1695-1704.
  • CAO L, LIU L, CHEN ZY et al.: Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain (2004) 127(Pt 3):535-549.
  • TUSZYNSKI MH, GABRIEL K, GAGE FH, SUHR S, MEYER S, ROSETTI A: Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp. Neurol. (1996) 137(1):157-173.
  • TUSZYNSKI MH, PETERSON DA, RAY J, BAIRD A, NAKAHARA Y, GAGE FH: Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp. Neurol. (1994) 126(1):1-14.
  • IBARRA A, REYES J, MARTINEZ S et al.: Use of cyclosporin-A in experimental spinal cord injury: design of a dosing strategy to maintain therapeutic levels. J. Neurotrauma (1996) 13(10):569-572.
  • VODA J, YAMAJI T, GOLD BG: Neuroimmunophilin ligands improve functional recovery and increase axonal growth after spinal cord hemisection in rats. J. Neurotrauma (2005) 22(10):1150-1161.
  • BETHEA JR, NAGASHIMA H, ACOSTA MC et al.: Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma (1999) 16(10):851-863.
  • TAKAMI T, OUDEGA M, BETHEA JR, WOOD PM, KLEITMAN N, BUNGE MB: Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome. J. Neurotrauma (2002) 19(5):653-666.
  • OUDEGA M, GAUTIER SE, CHAPON P et al.: Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials (2001) 22(10):1125-1136.
  • HURTADO A, MOON LD, MAQUET V, BLITS B, JEROME R, OUDEGA M: Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials (2006) 27(3):430-442.
  • XU XM, CHEN A, GUENARD V, KLEITMAN N, BUNGE MB: Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. (1997) 26(1):1-16.
  • STOKOLS S, TUSZYNSKI MH: Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials (2006) 27(3):443-451.
  • JOOSTEN EA, DIJKSTRA S, BROOK GA, VELDMAN H, BAR PR: Collagen IV deposits do not prevent regrowing axons from penetrating the lesion site in spinal cord injury. J. Neurosci. Res. (2000) 62(5):686-691.
  • DIENER PS, BREGMAN BS: Neurotrophic factors prevent the death of CNS neurons after spinal cord lesions in newborn rats. Neuroreport (1994) 5(15):1913-1917.
  • HOULE JD, JOHNSON JE: Nerve growth factor (NGF)-treated nitrocellulose enhances and directs the regeneration of adult rat dorsal root axons through intraspinal neural tissue transplants. Neurosci. Lett. (1989) 103(1):17-23.
  • HAGG T, GULATI AK, BEHZADIAN MA, VAHLSING HL, VARON S, MANTHORPE M: Nerve growth factor promotes CNS cholinergic axonal regeneration into acellular peripheral nerve grafts. Exp. Neurol. (1991) 112(1):79-88.
  • GAO Y, DENG K, HOU J et al.: Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron (2004) 44(4):609-621.
  • LU P, YANG H, JONES LL, FILBIN MT, TUSZYNSKI MH: Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. (2004) 24(28):6402-6409.
  • NIKULINA E, TIDWELL JL, DAI HN, BREGMAN BS, FILBIN MT: The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc. Natl. Acad. Sci. USA (2004) 101(23):8786-8790.
  • CAI D, DENG K, MELLADO W, LEE J, RATAN RR, FILBIN MT: Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron (2002) 35(4):711-719.
  • SPENCER T, FILBIN MT: A role for cAMP in regeneration of the adult mammalian CNS. J. Anat. (2004) 204(1):49-55.
  • DERGHAM P, ELLEZAM B, ESSAGIAN C, AVEDISSIAN H, LUBELL WD, MCKERRACHER L: Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. (2002) 22(15):6570-6577.
  • ELLEZAM B, DUBREUIL C, WINTON M et al.: Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain Res. (2002) 137:371-380.
  • FOURNIER AE, TAKIZAWA BT, STRITTMATTER SM: Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. (2003) 23(4):1416-1423.
  • SCHWEIGREITER R, WALMSLEY AR, NIEDEROST B et al.: Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol. Cell. Neurosci. (2004) 27(2):163-174.
  • LIEBSCHER T, SCHNELL L, SCHNELL D et al.: Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann. Neurol. (2005) 58(5):706-719.
  • DAVIES JE, TANG X, DENNING JW, ARCHIBALD SJ, DAVIES SJ: Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur. J. Neurosci. (2004) 19(5):1226-1242.
  • LI S, STRITTMATTER SM: Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J. Neurosci. (2003) 23(10):4219-4227.
  • FALCI S, HOLTZ A, AKESSON E et al.: Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J. Neurotrauma (1997) 14(11):875-884.
  • THOMPSON FJ, REIER PJ, UTHMAN B et al.: Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma (2001) 18(9):931-945.
  • WIRTH ED III, REIER PJ, FESSLER RG et al.: Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma (2001) 18(9):911-929.
  • FINK JS, SCHUMACHER JM, ELLIAS SL et al.: Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant. (2000) 9(2):273-278.
  • SCHUMACHER JM, ELLIAS SA, PALMER EP et al.: Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology (2000) 54(5):1042-1050.
  • KNOLLER N, AUERBACH G, FULGA V et al.: Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: Phase I study results. J. Neurosurg. Spine (2005) 3(3):173-181.
  • TUSZYNSKI MH, THAL L, PAY M et al.: A Phase I clinical trial of nerve growth factor gene therapy for Alzheimer’s disease. Nat. Med. (2005) 11(5):551-555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.