335
Views
41
CrossRef citations to date
0
Altmetric
Review

Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy

, , &
Pages 891-903 | Published online: 18 Aug 2006

Bibliography

  • SZABO I, GUAN L, ROGERS TJ: Modulation of macrophage phagocytic activity by cell wall components of Candida albicans. Cell. Immunol. (1995) 164:182-188.
  • VAN SPRIEL AB, LEUSEN JH, VAN EGMOND M et al.: Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood (2001) 97:2478-2486.
  • BROWN GD, HERRE J, WILLIAMS DL et al.: Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. (2003) 197:1119-1124.
  • GANTNER BN, SIMMONS RM, CANAVERA SJ, AKIRA S, UNDERHILL DM: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. (2003) 197:1107-1117.
  • CAMBI A, GIJZEN K, DE VRIES JM et al.: The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. (2003) 33:532-538.
  • TAKEDA K, KAISHO T, AKIRA S: Toll-like receptors. Annu. Rev. Immunol. (2003) 21:335-376.
  • TADA H, NEMOTO E, SHIMAUCHI H et al.: Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol. Immunol. (2002) 46:503-512.
  • NETEA MG, GOW NA, MUNRO CA et al.: Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. (2006) 116:1642-1650.
  • NETEA MG, VAN DER GRAAF CA, VONK AG et al.: The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. (2002) 185:1483-1489.
  • JOUAULT T, IBATA-OMBETTA S, TAKEUCHI O et al.: Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. (2003) 188:165-172.
  • VILLAMON E, ROIG P, GIL ML, GOZALBO D: Toll-like receptor 2 mediates prostaglandin E(2) production in murine peritoneal macrophages and splenocytes in response to Candida albicans. Res. Microbiol. (2005) 156:115-118.
  • SURAM S, BROWN GD, GHOSH M et al.: Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J. Biol. Chem. (2006) 281:5506-5514.
  • NETEA MG, SUTMULLER R, HERMANN C et al.: Toll-like receptor 2 suppresses immunity against Candida albicans through Induction of IL-10 and regulatory T cells. J. Immunol. (2004) 172:3712-3718.
  • MONTAGNOLI C, BACCI A, BOZZA S et al.: B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol. (2002) 169:6298-6308.
  • VAN DER GRAAF CA, NETEA MG, VERSCHUEREN I, VAN DER MEER JW, KULLBERG BJ: Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. (2005) 73:7458-7464.
  • GANTNER BN, SIMMONS RM, UNDERHILL DM: Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. (2005) 24:1277-1286.
  • NETEA MG, VAN DER GRAAF C, VAN DER MEER JW, KULLBERG BJ: Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J. Leukoc. Biol. (2004) 75:749-755.
  • FILLER SG, SWERDLOFF JN, HOBBS C, LUCKETT PM: Penetration and damage of endothelial cells by Candida albicans. Infect. Immun. (1995) 63:976-983.
  • PHAN QT, FRATTI RA, PRASADARAO NV, EDWARDS JE JR, FILLER SG: N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J. Biol. Chem. (2005) 280:10455-10461.
  • ZINK S, NASS T, ROSEN P, ERNST JF: Migration of the fungal pathogen Candida albicans across endothelial monolayers. Infect. Immun. (1996) 64:5085-5091.
  • PHAN QT, BELANGER PH, FILLER SG: Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect. Immun. (2000) 68:3485-3490.
  • SANCHEZ AA, JOHNSTON DA, MYERS C et al.: Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect. Immun. (2004) 72:598-601.
  • IBRAHIM AS, FILLER SG, SANGLARD D, EDWARDS JE JR, HUBE B: Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect. Immun. (1998) 66:3003-3005.
  • KLOTZ SA, MACA RD: Endothelial cell contraction increases Candida adherence to exposed extracellular matrix. Infect. Immun. (1988) 56:2495-2498.
  • KLOTZ SA, HARRISON JL, MISRA RP: Aggregated platelets enhance adherence of Candida yeasts to endothelium. J. Infect. Dis. (1989) 160:669-677.
  • YEAMAN MR, SOLDAN SS, GHANNOUM MA et al.: Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis. Infect. Immun. (1996) 64:1379-1384.
  • FILLER SG, IBE BO, IBRAHIM AS et al.: Mechanisms by which Candida albicans induces endothelial cell prostaglandin synthesis. Infect. Immun. (1994) 62:1064-1069.
  • NOVERR MC, HUFFNAGLE GB: Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. (2004) 72:6206-6210.
  • ALEM MA, DOUGLAS LJ: Prostaglandin production during growth of Candida albicans biofilms. J. Med. Microbiol. (2005) 54:1001-1005.
  • ALEM MA, DOUGLAS LJ: Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob. Agents Chemother. (2004) 48:41-47.
  • NOVERR MC, PHARE SM, TOEWS GB, COFFEY MJ, HUFFNAGLE GB: Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. (2001) 69:2957-2963.
  • OROZCO AS, ZHOU X, FILLER SG: Mechanisms of the proinflammatory response of endothelial cells to Candida albicans infection. Infect. Immun. (2000) 68:1134-1141.
  • FILLER SG, PFUNDER AS, SPELLBERG BJ, SPELLBERG JP, EDWARDS JE JR: Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells. Infect. Immun. (1996) 64:2609-2617.
  • ADAMS DH, LLOYD AR: Chemokines: leucocyte recruitment and activation cytokines. Lancet (1997) 349:490-495.
  • BEEKHUIZEN H, VAN FURTH R: Monocyte adherence to human vascular endothelium. J. Leukoc. Biol. (1993) 54:363-378.
  • KULLBERG BJ, VAN ‘T WOUT JW, POELL RJ, VAN FURTH R: Combined effect of fluconazole and recombinant human interleukin- 1 on systemic candidiasis in neutropenic mice. Antimicrob. Agents Chemother. (1992) 36:1225-1229.
  • FULURIJA A, ASHMAN RB, PAPADIMITRIOU JM: Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology (1996) 142(Pt 12):3487-3496.
  • QIAN Q, JUTILA MA, VAN ROOIJEN N, CUTLER JE: Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. (1994) 152:5000-5008.
  • JENSEN J, WARNER T, BALISH E: The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J. Infect. Dis. (1994) 170:900-905.
  • VAN ‘T WOUT JW, LINDE I, LEIJH PC, VAN FURTH R: Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur. J. Clin. Microbiol. Infect. Dis. (1988) 7:736-741.
  • VECCHIARELLI A, BISTONI F, CENCI E, PERITO S, CASSONE A: In-vitro killing of Candida species by murine immunoeffectors and its relationship to the experimental pathogenicity. Sabouraudia (1985) 23:377-387.
  • BACCARINI M, BLASI E, PUCCETTI P, BISTONI F: Phagocytic killing of Candida albicans by different murine effector cells. Sabouraudia (1983) 21:271-286.
  • VONK AG, WIELAND CW, NETEA MG, KULLBERG BJ: Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems. J. Microbiol. Methods (2002) 49:55-62.
  • BRUMMER E, MORRISON CJ, STEVENS DA: Recombinant and natural gamma-interferon activation of macrophages in vitro: different dose requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infect. Immun. (1985) 49:724-730.
  • FERRANTE A: Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: increased fungicidal activity against Torulopsis glabrata and Candida albicans and associated increases in oxygen radical production and lysosomal enzyme release. Infect. Immun. (1989) 57:2115-2122.
  • KULLBERG BJ, VAN ‘T WOUT JW, HOOGSTRATEN C, VAN FURTH R: Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J. Infect. Dis. (1993) 168:436-443.
  • DJEU JY, BLANCHARD DK, HALKIAS D, FRIEDMAN H: Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-gamma and tumor necrosis factor. J. Immunol. (1986) 137:2980-2984.
  • YAMAMOTO Y, KLEIN TW, FRIEDMAN H, KIMURA S, YAMAGUCHI H: Granulocyte colony-stimulating factor potentiates anti-Candida albicans growth inhibitory activity of polymorphonuclear cells. FEMS Immunol. Med. Microbiol. (1993) 7:15-22.
  • SCHAFFNER A, DAVIS CE, SCHAFFNER T et al.: In vitro susceptibility of fungi to killing by neutrophil granulocytes discriminates between primary pathogenicity and opportunism. J. Clin. Invest. (1986) 78:511-524.
  • ROILIDES E, HOLMES A, BLAKE C, PIZZO PA, WALSH TJ: Effects of granulocyte colony-stimulating factor and interferon- gamma on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J. Leukoc. Biol. (1995) 57:651-656.
  • DIAMOND RD, LYMAN CA, WYSONG DR: Disparate effects of interferon-gamma and tumor necrosis factor- alpha on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J. Clin. Invest. (1991) 87:711-720.
  • DIAMOND RD, KRZESICKI R, JAO W: Damage to pseudohyphal forms of Candida albicans by neutrophils in the absence of serum in vitro. J. Clin. Invest. (1978) 61:349-359.
  • DIAMOND RD, KRZESICKI R: Mechansims of attachment of neutrophils to Candida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudohyphae by microbicidal processes of neutrophils in vitro. J. Clin. Invest. (1978) 61:360-369.
  • DIAMOND RD, CLARK RA, HAUDENSCHILD CC: Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J. Clin. Invest. (1980) 66:908-917.
  • LEHRER RI, CLINE MJ: Interaction of Candida albicans with human leukocytes and serum. J. Bacteriol. (1969) 98:996-1004.
  • ASHMAN RB, PAPADIMITRIOU JM: Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol. Rev. (1995) 59:646-672.
  • DIAMOND RD, HAUDENSCHILD CC: Monocyte-mediated serum-independent damage to hyphal and pseudohyphal forms of Candida albicans in vitro. J. Clin. Invest. (1981) 67:173-182.
  • VAZQUEZ-TORRES A, BALISH E: Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev. (1997) 61:170-192.
  • FANG FC: Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. (1997) 99:2818-2825.
  • MARODI L, FOREHAND JR, JOHNSTON RB JR: Mechanisms of host defense against Candida species. II. Biochemical basis for the killing of Candida by mononuclear phagocytes. J. Immunol. (1991) 146:2790-2794.
  • PRYOR WA, SQUADRITO GL: The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. (1995) 268:L699-L722.
  • NETEA MG, MEER JW, VERSCHUEREN I, KULLBERG BJ: CD40/CD40 ligand interactions in the host defense against disseminated Candida albicans infection: the role of macrophage-derived nitric oxide. Eur. J. Immunol. (2002) 32:1455-1463.
  • VAZQUEZ-TORRES A, JONES-CARSON J, WARNER T, BALISH E: Nitric oxide enhances resistance of SCID mice to mucosal candidiasis. J. Infect. Dis. (1995) 172:192-198.
  • VAZQUEZ-TORRES A, JONES-CARSON J, BALISH E: Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect. Immun. (1996) 64:3127-3133.
  • ARATANI Y, KOYAMA H, NYUI S et al.: Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. (1999) 67:1828-1836.
  • REEVES EP, LU H, JACOBS HL et al.: Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature (2002) 416:291-297.
  • MARKART P, FAUST N, GRAF T et al.: Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochem. J. (2004) 380:385-392.
  • LUPETTI A, DANESI R, VAN ‘T WOUT JW et al.: Antimicrobial peptides: therapeutic potential for the treatment of Candida infections. Expert. Opin. Investig. Drugs (2002) 11:309-318.
  • NETEA MG, GIJZEN K, COOLEN N et al.: Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes. Infect. (2004) 6:985-989.
  • D’OSTIANI CF, DEL SERO G, BACCI A et al.: Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. (2000) 191:1661-1674.
  • ROMANI L, BISTONI F, PUCCETTI P: Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol. (2002) 10:508-514.
  • FORSYTH CB, MATHEWS HL: Lymphocytes utilize CD11b/CD18 for adhesion to Candida albicans. Cell. Immunol. (1996) 170:91-100.
  • BENO DW, STOVER AG, MATHEWS HL: Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J. Immunol. (1995) 154:5273-5281.
  • ARANCIA G, MOLINARI A, CRATERI P et al.: Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans. Infect. Immun. (1995) 63:280-288.
  • ARANCIA G, STRINGARO A, CRATERI P et al.: Interaction between human interleukin-2-activated natural killer cells and heat-killed germ tube forms of Candida albicans. Cell. Immunol. (1998) 186:28-38.
  • GREENFIELD RA, ABRAMS VL, CRAWFORD DL, KUHLS TL: Effect of abrogation of natural killer cell activity on the course of candidiasis induced by intraperitoneal administration and gastrointestinal candidiasis in mice with severe combined immunodeficiency. Infect. Immun. (1993) 61:2520-2525.
  • ALGARRA I, ORTEGA E, SERRANO MJ, ALVAREZ DC, GAFORIO JJ: Suppression of splenic macrophage Candida albicans phagocytosis following in vivo depletion of natural killer cells in immunocompetent BALB/c mice and T-cell-deficient nude mice. FEMS Immunol. Med. Microbiol. (2002) 33:159-163.
  • MURCIANO C, VILLAMON E, O’CONNOR JE, GOZALBO D, GIL ML: Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect. Immun. (2006) 74:1403-1406.
  • ZHANG MX, CUTLER JE, HAN Y, KOZEL TR: Contrasting roles of mannan-specific monoclonal immunoglobulin M antibodies in the activation of classical and alternative pathways by Candida albicans. Infect. Immun. (1998) 66:6027-6029.
  • KOZEL TR, WEINHOLD LC, LUPAN DM: Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect. Immun. (1996) 64:3360-3368.
  • NETH O, JACK DL, DODDS AW et al.: Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. (2000) 68:688-693.
  • LILLEGARD JB, SIM RB, THORKILDSON P, GATES MA, KOZEL TR: Recognition of Candida albicans by mannan-binding lectin in vitro and in vivo. J. Infect. Dis. (2006) 193:1589-1597.
  • LEE SJ, GONZALEZ-ASEGUINOLAZA G, NUSSENZWEIG MC: Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. Mol. Cell Biol. (2002) 22:8199-8203.
  • NETEA MG, CURFS JH, DEMACKER PN et al.: Infusion of lipoproteins into volunteers enhances the growth of Candida albicans. Clin. Infect. Dis. (1999) 28:1148-1151.
  • NETEA MG, DEMACKER PN, DE BONT N et al.: Hyperlipoproteinemia enhances susceptibility to acute disseminated Candida albicans infection in low-density-lipoprotein-receptor-deficient mice. Infect. Immun. (1997) 65:2663-2667.
  • D’ANGIO R, QUERCIA RA, TREIBER NK, MCLAUGHLIN JC, KLIMEK JJ: The growth of microorganisms in total parenteral nutrition admixtures. J. Parenter. Enteral. Nutr. (1987) 11:394-397.
  • MURTHY AR, LEHRER RI, HARWIG SS, MIYASAKI KT: In vitro candidastatic properties of the human neutrophil calprotectin complex. J. Immunol. (1993) 151:6291-6301.
  • DE BONT N, NETEA MG, DEMACKER PN et al.: Apolipoprotein E-deficient mice have an impaired immune response to Klebsiella pneumoniae. Eur. J. Clin. Invest. (2000) 30:818-822.
  • VONK AG, DE BONT N, NETEA MG et al.: Apolipoprotein-E-deficient mice exhibit an increased susceptibility to disseminated candidiasis. Med. Mycol. (2004) 42:341-348.
  • MOURAD S, FRIEDMAN H: Pathogenicity of Candida. J. Bacteriol. (1961) 81:550-556.
  • MOURAD S, FRIEDMAN L: Passive immunization of mice against Candida albicans. Sabouraudia (1968) 6:103-105.
  • CARROW EW, HECTOR RF, DOMER JE: Immunodeficient CBA/N mice respond effectively to Candida albicans. Clin. Immunol. Immunopathol. (1984) 33:371-380.
  • JENSEN J, WARNER T, BALISH E: Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J. Infect. Dis. (1993) 167:912-919.
  • HAN Y, CUTLER JE: Antibody response that protects against disseminated candidiasis. Infect. Immun. (1995) 63:2714-2719.
  • HAN Y, RIESSELMAN MH, CUTLER JE: Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect. Immun. (2000) 68:1649-1654.
  • ZHANG MX, BOHLMAN MC, ITATANI C et al.: Human recombinant antimannan immunoglobulin G1 antibody confers resistance to hematogenously disseminated candidiasis in mice. Infect. Immun. (2006) 74:362-369.
  • CAESAR TONTHAT TC, CUTLER JE: A monoclonal antibody to Candida albicans enhances mouse neutrophil candidacidal activity. Infect. Immun. (1997) 65:5354-5357.
  • CUTLER JE: Defining criteria for anti-mannan antibodies to protect against candidiasis. Curr. Mol. Med. (2005) 5:383-392.
  • MATTHEWS RC, BURNIE JP: Human recombinant antibody to HSP90: a natural partner in combination therapy. Curr. Mol. Med. (2005) 5:403-411.
  • VILANOVA M, TEIXEIRA L, CARAMALHO I et al.: Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology (2004) 111:334-342.
  • TOROSANTUCCI A, BROMURO C, CHIANI P et al.: A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. (2005) 202:597-606.
  • MONTAGNOLI C, BOZZA S, BACCI A et al.: A role for antibodies in the generation of memory antifungal immunity. Eur. J. Immunol. (2003) 33:1193-1204.
  • ROMANI L, MONTAGNOLI C, BOZZA S et al.: The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int. Immunol. (2004) 16:149-161.
  • TRINCHIERI G: Role of interleukin-12 in human Th1 response. Chem. Immunol. (1996) 63:14-29.
  • ROMANI L, MENCACCI A, GROHMANN U et al.: Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J. Exp. Med. (1992) 176:19-25.
  • ROMANI L, PUCCETTI P, MENCACCI A et al.: Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J. Immunol. (1994) 152:3514-3521.
  • VAZQUEZ-TORRES A, JONES-CARSON J, WAGNER RD, WARNER T, BALISH E: Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun. (1999) 67:670-674.
  • MENCACCI A, DEL SERO G, CENCI E et al.: Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. (1998) 187:307-317.
  • MENCACCI A, CENCI E, DEL SERO G et al.: IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J. Immunol. (1998) 161:6228-6237.
  • SAKAGUCHI S: Regulatory T cells: key controllers of immunologic self-tolerance. Cell (2000) 101:455-458.
  • SHEVACH EM: Certified professionals: CD4(+)CD25(+) suppressor T cells. J. Exp. Med. (2001) 193:F41-F46.
  • RONCAROLO MG, LEVINGS MK: The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol. (2000) 12:676-683.
  • COFFMAN RL, VARKILA K, SCOTT P, CHATELAIN R: Role of cytokines in the differentiation of CD4+ T-cell subsets in vivo. Immunol. Rev. (1991) 123:189-207.
  • MOORE KW, DE WAAL MR, COFFMAN RL, O’GARRA A: Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. (2001) 19:683-765.
  • HOSKEN NA, SHIBUYA K, HEATH AW, MURPHY KM, O’GARRA A: The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J. Exp. Med. (1995) 182:1579-1584.
  • CUTLER JE: Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J. Reticuloendothel. Soc. (1976) 19:121-124.
  • JONES-CARSON J, VAZQUEZ-TORRES A, WARNER T, BALISH E: Disparate requirement for T cells in resistance to mucosal and acute systemic candidiasis. Infect. Immun. (2000) 68:2363-2365.
  • MENCACCI A, SPACCAPELO R, DEL SERO G et al.: CD4+ T-helper-cell responses in mice with low-level Candida albicans infection. Infect. Immun. (1996) 64:4907-4914.
  • SPACCAPELO R, ROMANI L, TONNETTI L et al.: TGF-beta is important in determining the in vivo patterns of susceptibility or resistance in mice infected with Candida albicans. J. Immunol. (1995) 155:1349-1360.
  • KULLBERG BJ, VAN ‘T WOUT JW, VAN FURTH R: Role of granulocytes in increased host resistance to Candida albicans induced by recombinant interleukin-1. Infect. Immun. (1990) 58:3319-3324.
  • VAN’T WOUT JW, VAN DER MEER JW, BARZA M, DINARELLO CA: Protection of neutropenic mice from lethal Candida albicans infection by recombinant interleukin 1. Eur. J. Immunol. (1988) 18:1143-1146.
  • STUYT RJ, NETEA MG, VAN KRIEKEN JH, VAN DER MEER JW, KULLBERG BJ: Recombinant interleukin-18 protects against disseminated Candida albicans infection in mice. J. Infect. Dis. (2004) 189:1524-1527.
  • NETEA MG, VAN TITS LJ, CURFS JH et al.: Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J. Immunol. (1999) 163:1498-1505.
  • NETEA MG, BROUWER AE, HOOGENDOORN EH et al.: Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon-gamma therapy. Clin. Infect. Dis. (2004) 39:e83-e87.
  • KULLBERG BJ, OUDE LASHOF AM, NETEA MG: Design of efficacy trials of cytokines in combination with antifungal drugs. Clin. Infect. Dis. (2004) 39(Suppl. 4):S218-S223.
  • KULLBERG BJ, NETEA MG, CURFS JH et al.: Recombinant murine granulocyte colony-stimulating factor protects against acute disseminated Candida albicans infection in nonneutropenic mice. J. Infect. Dis. (1998) 177:175-181.
  • VAN SPRIEL AB, VAN DEN HERIK-OUDIJK IE, VAN DE WINKEL JG: A single injection of polyethylene-glycol granulocyte colony-stimulating factor strongly prolongs survival of mice with systemic candidiasis. Cytokine (2000) 12:666-670.
  • KULLBERG BJ, VANDEWOUDE K, HERBRECHT R, JACOBS F, KUJATH P: A double-blind, randomized, placebo-controlled Phase II study of filgrastim (recombinant granulocyte colony-stimulating factor) in combination with fluconazole for treatment of invasive candidiasis and candidemia in nonneutropenic patients. In: 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society of Microbiology, Washington DC, USA (1998):479.
  • MENCACCI A, TOROSANTUCCI A, SPACCAPELO R et al.: A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infect. Immun. (1994) 62:5353-5360.
  • HAN Y, ULRICH MA, CUTLER JE: Candida albicans mannan extract-protein conjugates induce a protective immune response against experimental candidiasis. J. Infect. Dis. (1999) 179:1477-1484.
  • MONTAGNOLI C, SANDINI S, BACCI A, ROMANI L, LA VALLE R: Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med. Mycol. (2004) 42:319-324.
  • IBRAHIM AS, SPELLBERG BJ, AVENISSIAN V et al.: Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect. Immun. (2005) 73:999-1005.
  • BROMURO C, TOROSANTUCCI A, CHIANI P et al.: Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated candidiasis in recipients of a Candida albicans vaccine. Infect. Immun. (2002) 70:5462-5470.
  • IWASAKI A, MEDZHITOV R: Toll-like receptor control of the adaptive immune responses. Nat. Immunol. (2004) 5:987-995.
  • VILLAMON E, GOZALBO D, ROIG P et al.: Toll-like receptor 2 is dispensable for acquired host immune resistance to Candida albicans in a murine model of disseminated candidiasis. Microbes Infect. (2004) 6:542-548.
  • BELLOCCHIO S, MONTAGNOLI C, BOZZA S et al.: The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. (2004) 172:3059-3069.
  • LIU L, KANG K, TAKAHARA M, COOPER KD, GHANNOUM MA: Hyphae and yeasts of Candida albicans differentially regulate interleukin-12 production by human blood monocytes: inhibitory role of C. albicans germination. Infect. Immun. (2001) 69:4695-4697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.