308
Views
21
CrossRef citations to date
0
Altmetric
Reviews

TGF-β3: A promising growth factor in engineered organogenesis

, & , PhD
Pages 1485-1493 | Published online: 07 Sep 2008

Bibliography

  • Goessler UR, Bugert P, Bieback K, et al. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int J Mol Med 2008;21(3):271-9
  • Inanç B, Elçin AE, Elçin YM. Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 2007;31(11):792-800
  • Sasaki M, Abe R, Fujita Y, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008;180(4):2581-7
  • Nirmalanandhan VS, Dressler MR, Shearn JT, et al. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials. J Biomech Eng 2007;129(6):919-23
  • Richardson SM, Hughes N, Hunt JA, et al. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 2008;29(1):85-93
  • Bommireddy R, Pathak LJ, Martin J, et al. Self-antigen recognition by TGFβ1-deficient T cells causes their activation and systemic inflammation. Lab Invest 2006;86(10):1008-19
  • McLennan IS, Koishi K. Fetal and maternal transforming growth factor-β1 may combine to maintain pregnancy in mice. Biol Reprod 2004;70(6):1614-18
  • Williams AO, Knapton AD, Geiser A, et al. The liver in transforming growth factor-Beta-1 (TGF-β1) null mutant mice. Ultrastruct Pathol 1996;20(5):477-90
  • Engle SJ, Hoying JB, Boivin GP, et al. Transforming growth factor β1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 1999;59(14):3379-86
  • Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-β2-knockout mice. Circulation 2001;103(22):2745-52
  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 1997;124(13):2659-70
  • Kaartinen V, Cui XM, Heisterkamp N, et al. Transforming growth factor-β3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev Dyn 1997;209(3):255-60
  • Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995;11(4):415-21
  • Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (L-lactic-co-glycolic acid) scaffold. Biomaterials 2007;28(17):2763-71
  • McCullough KA, Waits CA, Garimella R, et al. Immunohistochemical localization of bone morphogenetic proteins (BMPs) 2, 4, 6, and 7 during induced heterotopic bone formation. J Orthop Res 2007;25(4):465-72
  • Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2007;25(5):665-77
  • Lee JY, Kim KH, Shin SY, et al. Enhanced bone formation by transforming growth factor-β1-releasing collagen/chitosan microgranules. J Biomed Mater Res A 2006;76(3):530-9
  • Zhang H, Aronow MS, Gronowicz GA. Transforming growth factor-beta 1 (TGF-β1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures. J Biomed Mater Res A 2005;75(1):98-105
  • Lee SW, Choi KY, Cho JY, et al. TGF-β2 stimulates cranial suture closure through activation of the Erk-MAPK pathway. J Cell Biochem 2006;98(4):981-91
  • Toom A, Arend A, Gunnarsson D, et al. Bone formation zones in heterotopic ossifications: histologic findings and increased expression of bone morphogenetic protein 2 and transforming growth factors β2 and β3. Calcif Tissue Int 2007;80(4):259-67
  • Simmons CA, Alsberg E, Hsiong S, et al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004;35(2):562-9
  • Oest ME, Dupont KM, Kong HJ, et al. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 2007;25(7):941-50
  • Maissen O, Eckhardt C, Gogolewski S, et al. Mechanical and radiological assessment of the influence of rhTGFβ-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study. J Orthop Res 2006;24(8):1670-78
  • Moioli EK, Hong L, Mao JJ. Inhibition of osteogenic differentiation of human mesenchymal stem cells. Wound Repair Regen 2007;15(3):413-21
  • Harris MT, Butler DL, Boivin GP, et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res 2004;22(5):998-1003
  • Moioli EK, Clark PA, Sumner DR, Mao JJ. Autologous stem cell regeneration in craniosynostosis. Bone 2008;42(2):332-40
  • Chong SL, Mitchell R, Moursi AM, et al. Rescue of coronal suture fusion using transforming growth factor-beta 3 (Tgf-β3) in rabbits with delayed-onset craniosynostosis. Anat Rec A Discov Mol Cell Evol Biol 2003;274(2):962-71
  • Miyamoto C, Matsumoto T, Sakimura K, Shindo H. Osteogenic protein-1 with transforming growth factor-β1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. J Orthop Sci 2007;12(6):555-61
  • Mehlhorn AT, Niemeyer P, Kaschte K, et al. Differential effects of BMP-2 and TGF-β1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif 2007;40(6):809-23
  • Kolambkar YM, Peister A, Soker S, et al. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 2007;38(5):405-13
  • Shuler FD, Georgescu HI, Niyibizi C, et al. Increased matrix synthesis following adenoviral transfer of a transforming growth factor β1 gene into articular chondrocytes. J Orthop Res 2000;18:585-92
  • Alvarez J, Sohn P, Zeng X, et al. TGFβ2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 2002;129:1913-24
  • Beck LS, Wong RL, DeGuzman L, et al. Combination of bone marrow and TGF-β1 augment the healing of critical-sized bone defects. J Pharm Sci 1998;87:1379-86
  • Sumner DR, Turner TM, Cohen M, et al. Aging does not lessen the effectiveness of TGFβ2-enhanced bone regeneration. J Bone Miner Res 2003;18:730-6
  • Goessler UR, Bugert P, Bieback K, et al. In vitro analysis of the expression of TGFβ-superfamily- members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett 2005;10(2):345-62
  • Neumann K, Endres M, Ringe J, et al. BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture. J Cell Biochem 2007;102(3):626-37
  • Moioli EK, Mao JJ. Chondrogenesis of mesenchymal stem cells by controlled delivery of transforming growth factor-β3. Conf Proc IEEE Eng Med Biol Soc 2006;1:2647-50
  • Miyanishi K, Trindade MC, Lindsey DP, et al. Effects of hydrostatic pressure and transforming growth factor-β3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 2006;12(6):1419-28
  • Fan H, Zhang C, Li J, et al. Gelatin microspheres containing TGF-β3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 2008;9(3):927-34
  • Park JS, Woo DG, Yang HN, et al. Heparin-bound transforming growth factor-β3 enhances neocartilage formation by rabbit mesenchymal stem cells. Transplantation 2008;85(4):589-96
  • Haider M, Cappello J, Ghandehari H, Leong KW. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm Res 2008;25(3):692-9
  • Mehlhorn AT, Schmal H, Kaiser S, et al. Mesenchymal stem cells maintain TGF-β-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng 2006;12(6):1393-403
  • Kim SG, Jeon CH, Suh HS, et al. P-glycoprotein expression in extracellular matrix formation of chondrogenic differentiation of human adult stem cells. Cell Biol Int 2007;31(9):1042-8
  • Mrugala D, Bony C, Neves N, et al. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 2008;67(3):288-95
  • Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26(34):7082-94
  • Jin EJ, Park JH, Lee SY, et al. Wnt-5a is involved in TGF-β3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int J Biochem Cell Biol 2006;38:183-195
  • Jin EJ, Lee SY, Jung JC, et al. TGF-β3 inhibits chondrogenesis of cultured chick leg bud mesenchymal cells via downregulation of connexin 43 and integrin β4. J Cell Physiol 2008;214(2):345-53
  • Choi YS, Lim SM, Shin HC, et al. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett 2007;29(2):323-9
  • Kolambkar YM, Peister A, Soker S, et al. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 2007;38(5):405-13
  • Kirton JP, Crofts NJ, George SJ, et al. Wnt/β-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res 2007;101(6):581-9
  • Wolff EF, Wolff AB, Hongling Du, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci 2007;14(6):524-33
  • Na K, Kim S, Woo DG, et al. Combination material delivery of dexamethasone and growth factor in hydrogel blended with hyaluronic acid constructs for neocartilage formation. J Biomed Mater Res A 2007;83(3):779-86
  • Choi SJ, Na K, Kim S, et al. Combination of ascorbate and growth factor (TGF β-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes for neocartilage formation. J Biomed Mater Res A 2007;83(4):897-905
  • Yun K, Moon HT. Inducing chondrogenic differentiation in injectable hydrogels embedded with rabbit chondrocytes and growth factor for neocartilage formation. J Biosci Bioeng 2008;105(2):122-6
  • Na K, Kim S, Woo DG, et al. Synergistic effect of TGFβ-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test. J Biotechnol 2007;128:412-22
  • Lima EG, Bian L, Mauck RL, et al. The effect of applied compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Conf Proc IEEE Eng Med Biol Soc 2006;1:779-82
  • Lima EG, Bian L, Ng KW, et al. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis Cartilage 2007;15(9):1025-33
  • Kang SW, Bada LP, Kang CS, et al. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett 2008;30(3):435-9
  • Jin JZ, Ding J. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion. Development 2006;133(17):3341-7
  • Xu X, Han J, Ito Y, et al. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Dev Biol 2006;297(1):238-48
  • Dudas M, Kim J, Li WY, et al. Epithelial and ectomesenchymal role of the type I TGF-β receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol 2006;296(2):298-314
  • Rullo R, Gombos F, Ferraraccio F, Farina A, et al. TGFβ3 expression in non-syndromic orofacial clefts. Int J Pediatr Otorhinolaryngol 2006;70(10):1759-64
  • Spivak RM, Endo M, Zajac A, et al. In utero gene delivery of adenovirus encoded TGF-beta3 restores physiologic palatal fusion and rescues cleft palate in a TGF-beta3 knockout mouse. J Am Coll Surg 2007;205(3):S92
  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 1997;124(13):2659-70
  • Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90(2):770-4
  • Yang LT, Kaartinen V. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants. Dev Biol 2007;312(1):384-95
  • Ahmed S, Liu CC, Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) β3. Dev Biol 2007;309(2):193-207
  • Sasaki Y, O'Kane S, Dixon J, et al. Temporal and spatial expression of Pax9 and Sonic hedgehog during development of normal mouse palates and cleft palates in TGF-β3 null embryos. Arch Oral Biol 2007;52(3):260-7
  • Bandyopadhyay B, Fan J, Guan S, et al. A “traffic control” role for TGFβ3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 2006;172(7):1093-1105
  • Cowin AJ, Holmes TM, Brosnan P, Ferguson MW. Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol 2001;11(5):424-31
  • Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995;108(Pt 3):985-1002
  • Li WY, Huang EY, Dudas M, et al. Transforming growth factor-β3 affects plasminogen activator inhibitor-1 expression in fetal mice and modulates fibroblast-mediated collagen gel contraction. Wound Repair Regen 2006;14(5):516-25
  • Hosokawa R, Nonaka K, Morifuji M, et al. TGF-β3 decreases type I collagen and scarring after labioplasty. J Dent Res 2003;82(7):558-64
  • Sloan AJ, Perry H, Matthews JB, Smith AJ. Transforming growth factor-β isoform expression in mature human healthy and carious molar teeth. Histochem J 2000;32(4):247-52
  • Klopcic B, Maass T, Meyer E, et al. TGF-β superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007;86(11-12):781-99
  • Teare JA, Ramoshebi LN, Ripamonti U. Periodontal tissue regeneration by recombinant human transforming growth factor-β3 in Papio ursinus. J Periodontal Res 2008;43(1):1-8
  • Huojia M, Muraoka N, Yoshizaki K, et al. TGF-β3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development. Dev Growth Differ 2005;47(3):141-52
  • Battista D, Ferrari CC, Gage FH, Pitossi FJ. Neurogenic niche modulation by activated microglia: transforming growth factor β increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 2006;23(1):83-93
  • Roussa E, Wiehle M, Dünker N, et al. Transforming growth factor β is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 2006;24(9):2120-9
  • Farkas LM, Dünker N, Roussa E, et al. Transforming growth factor-βs are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 2003;23(12):5178-86
  • Hayashi H, Morizane A, Koyanagi M, et al. Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur J Neurosci 2008;27(2):261-8
  • Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003;6(1):21-7
  • Peterziel H, Unsicker K, Krieglstein K. TGFβ induces responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J Cell Biol 2002;159(1):157-67
  • Breen A, Strappe P, Kumar A, et al. Optimization of a fibrin scaffold for sustained release of an adenoviral gene vector. J Biomed Mater Res A 2006;78(4):702-8
  • Chun KW, Lee JB, Kim SH, Park TG. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 2005;26(16):3319-26
  • Megeed Z, Haider M, Li D, et al. In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 2004;94(2-3):433-45
  • Hao JH, Yao YC, Varshney RR, et al. Gene transfer and living release of transforming growth factor-beta 3 for cartilage tissue engineering applications. Tissue Eng Part C Methods 2008; DOI: 10.1089/ten.tec.2008.0163
  • Molinier-Frenkel V, Gahery-Segard H, Mehtali M, et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000;74:7678-82
  • Trotman LC, Mosberger N, Fornerod M, et al. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 2001;3:1092-100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.