79
Views
22
CrossRef citations to date
0
Altmetric
Review

Malaria vaccines in development

Pages 489-503 | Published online: 05 Aug 2005

Bibliography

  • SNOW RW, GUERRA CA, NOOR AM et al.: The global distribution of clinical episodes of Plasmodium fakiparum malaria. Nature (2005) 434:214–217.
  • GARDNER MJ, HALL N, FUNG E et al.: Genome sequence of the human malaria parasite plasmodium falciparum. Nature (2002) 419:498–511.
  • BALLOU WR, KESTER KE, HEPPNER DG: Pre-erythrocytic malaria vaccines to prevent Plasmodium falciparum malaria. In: Malaria Immunology. P Perlmann, M Troye-Blomberg (Eds). Chem. Immunol. Basel, Karger, Switzerland (2002):253–261.
  • HOFFMAN SL, WISTAR R, BALLOU WR et al.: Immunity to malaria and naturally acquired antibodies to the circumsporozoite protein of Plasmodium falciparum. N EngL J. Med. (1986) 315:601–606.
  • PLEBANSKI M, AIDOO M, WHITTLE HC et al.: Precursor frequency analysis of cytotoxic T lymphocytes to pre-erythrocytic antigens of Plasmodium falciparum in west Africa. J. Immunol. (1997) 158:2849–2855.
  • SCHELLENBERG D, MENENDEZ C, KAHIGWA E et al.: African children with malaria in an area of intense Plasmodium falciparum transmission: features on admission to the hospital and risk factors for death. Am. J. Trop. Med. Hyg (1999) 61:431–438.
  • THOMAS AW, TRAPE JF, ROGIER C, GONCALVES A, ROSARIO VE, NARUM DL: High prevalence of natural antibodies against Plasmodium falciparum 83-kilodalton apical membrane antigen (PF83/AMA-1) as detected by capture-enzyme-linked immunosorbent assay using full-length baculovirus recombinant PF83/ AMA-1. Am. J. Trop. Med. Hyg (1994) 51(6):730–740.
  • GOOD MF: Vaccine-induced immunity to malaria parasites and the need for novel strategies. Trends Parasitol. (2005) 21:29–34.
  • BLACKMAN MJ, SCOTT-FINNIGAN TJ, SHAI S, HOLDER AA: Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J. Exp. Med. (1994) 180:389–393.
  • SCHOFIELD L, HEWITT MC, EVANS K et al.: Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature (2002) 418:785–789.
  • KASLOW DC: Transmission-blocking vaccines. Chem. ImmunoL (2002) 80:287–307.
  • BALLOU WR, KESTER KE, STOUTE JA et al.: Malaria vaccines: triumphs or tribulations? Parasitologia (1999) 41(1-3):403–408.
  • NUSSENZWEIG RS, VANDERBERG J, MOST H, ORTON C: Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. Nature (1967) 216:160–162.
  • NUSSENZWEIG NUSSENZWEIG RS: Rationale for the development of an engineered sporozoite malaria vaccine. Adv. Immunol. (1989) 45:283–334.
  • CLYDE DF, MOST H, MCCARTHY VC, VANDERBERG JP: Immunization of man against sporozite-inducedfakiparum malaria. Am. J. Med. Sci. (1973) 266:169–177.
  • EGAN JE, WEBER JL, BALLOU WR et al.: Efficacy of murine malaria sporozoite vaccines: implications for human vaccine development. Science (1987) 236:453–456.
  • NARDIN EH, NUSSENZWEIG RS, ALTSZULER R et al.: Cellular and humoral immune responses to a recombinant Pfalciparum CS protein in sporozoite-immunized rodents and human volunteers. Bull. World Health Organ. (1990) 68:85–87.
  • EGAN JE, HOFFMAN SL, HAYNES JD et al.: Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am. J. Trop. Med. Hyg. (1993) 49:166–173.
  • KRZYCH U, LYON JL, JAREED T et al.: T lymphocytes from volunteers immunized with irradiated Pfakiparum sporozoites recognize liver and blood stage malaria antigens. J. ImmunoL (1995) 155:4072–4077.
  • HOFFMAN SL, GOH LM, LUKE TC et al.: Protection of humans against malaria by immunization with radiation attenuated Plasmodium species sporozoites. J. Infect. Dis. (2002) 185:1155–1164.
  • BEIER JC, BEIER MS, VAUGHAN JA, PUMPUNI CB, DAVIS JR, NODEN BH: Sporozoite transmission by Anopheles freeborni and Anopheles gambiae experimentally infected with Plasmodium falciparum. J. Am. Mosq. Control Assoc. (1992) 8:404–408.
  • SCHELLER LF, AZAD AF: Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. Proc. NatL Acad. Sci. USA (1995) 92:4066–4068.
  • BEJON P, ANDREWS L, ANDERSEN F et al.: Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. (2005) 191:619–626.
  • BROWN AE, SINGHARAJ P, WEBSTER HK et al.: Safety, immunogenicity and limited efficacy study of a recombinant Plasmodium falciparum circumsporozoite vaccine in Thai soldiers. Vaccine (1994) 12:102–108.
  • SHERWOOD JA, COPELAND RS, TAYLOR KA et al.: Plasmodium falciparum circumsporozoite vaccine immunogencity and efficacy trial with natural challenge quantitation in an area of endemic human malaria of Kenya. Vaccine (1996) 14:817–827.
  • MOORTHY VS, IMOUKHUEDE EB, MILLIGAN P et al.: A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med. (2004) 1:128–136.
  • KESTER KE, MCKINNEY DA, TORNIEPORTH N et al.: Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J. Inf Dis. (2001) 183:640–647.
  • ALONSO PL, SACARLAL J, APONTE JJ et al.: Efficacy of the RTS,S/ASO2A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet (2004) 364:1411–1420.
  • SCHELLENBERG D, MENENDEZ C, KAHIGWA E et al.: Intermittent treatment for malaria and anaemia control at time of routine vaccination in Tanzanian infants; a randomised, placebo-controlled trial. Lancet (2001) 357:1471–1477.
  • MASSAGA JJ, KITUA AY, LEMNGE M et al.: Effect of intermittent treatment with amodiaquine on anaemia and malaria fevers in Tanzania; a randomised, placebo-controlled trial. Lancet (2003) 361:1853–1860.
  • LENGELER C: Insecticide-treated bed netsand curtains for preventing malaria. Cochrane Database Syst. Rev. (2004) 2:CD000363.
  • BALLOU WR, ROTHBARD J, WIRTZ RA et al.: Immunogenicity of synthetic peptides from the circumsporozoite protein of Plasmodium falciparum. Science (1985) 228:996–999.
  • RATHORE D, NAGARKATTI1 R, JANI D et al.: An immunologically cryptic epitope of Plasmodium fakiparum circumsporozoite protein facilitates liver cell recognition and induces protective antibodies that block liver cell invasion. Biol. Chem. (2005) 280(20:20524–20529.
  • REECE WH, PINDER M, GOTHARD PK et al.: A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat. Med. (2004) 10:406–410.
  • BERENZON D, SCHWENK RJ, LETELLIER L et al.: Protracted protection to plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8* T cells. ImmunoL (2003) 171:2024–2034.
  • CHULAY, JD, SCHNEIDER I, COSGRIFF TM et al.: Malaria transmitted to man by mosquitoes infected from cultured Plasmodium falciparum. Am. Soc. Trop. Med. Hyg. (1986) 35:66–68.
  • STOUTE JA., SLAOUI M, HEPPNER DG et al.: A preliminary evaluation of a recombinant circumsporozoite protein malaria vaccine against Plasmodium falciparum. N Engl. J. Med. (1997) 336:86–91.
  • BENMOHAMED L, THOMAS A, DRUILHE P: Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect. Immun. (2004) 72:4376–4384.
  • VUOLA JM, KEATING S, WEBSTER DP et al.: Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J. Immunol. (2005) 174:449–455.
  • GORDON DM, MCGOVERN TW, KRZYCH U et al.: Safety, immunogenicity and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein/HBsAg subunit vaccine. J. Inf Dis. (1995) 171:1576–1585.
  • GARCON N, HEPPNER DG, COHEN J: Development of RTS,S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev. Vaccines (2003) 2:231–238.
  • SUN P, SCHWENK R, WHITE K et al.: Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4(*) and CD8(*) T cells producing IFN-gamma. J. Immunol (2003) 171(12):6961–6967.
  • LALVANI A, MORIS P, VOSS G et al.: Potent induction of focused Th-1 type cellular and humoral immune responses by RTS,S/SBAS2 recombinant Pfaktparum malaria vaccine. J. Infect. Dis. (1999) 180:1656–1664.
  • STOUTE, JA, KESTER KE, KRZYCH U et al.: Long term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J. Infect. Dis.(1998) 178: 1139–1144.
  • DOHERTY JF, PINDER M, TORNIEPORTH N et al.: A Phase I safety and immunogenicity trial with the candidate malaria vaccine, RTS,S/SABAS2, in semi-immune adults in the Gambia. Am. J. Trop. Med. Hyg-. (1999) 61:865–868.
  • PINDER M, REECE WH, PLEBANSKI M et al.: Cellular immunity induced by the recombinant Plasmodium falciparum malaria vaccine, RTS,S/AS02, in semi-immune adults in the Gambia. Clin. Exp. Immunol (2004) 135:286–293.
  • BOJANG KA, MILLIGAN PJ, PINDER M et al.: Efficacy of RTS,S/A502 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in the Gambia: a randomised trial. Lancet (2001) 358:1927–1934.
  • HEPPNER DG, CUMMINGS JF, OCKENHOUSE CF, KESTER KE, COHEN JD, BALLOU WR: Adjuvanted RTS,S and other protein-based pre-erythrocytic stage malaria vaccines. In: New Generation Vaccines, 3rd Ed MM Levine, JB Kaper, R Rappuoli, MA Liu, MF Good (Eds), Dekker, New York, USA (2004):851–860.
  • HEPPNER DG Jr, KESTER KE, OCKENHOUSE CF et al.: Towards an RTS,S-based, multi-stage, multi-antigen vaccine against faktparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine (2005) 23:2243–2250.
  • BIRKETT A, LYONS K, SCHMIDT A et al.: A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect. Immun. (2002) 70(12):6860–6870.
  • MILICH DR, HUGHES J, JONES J, SALLBERG M, PHILLIPS TR: Conversion of poorly immunogenic malaria repeat sequences into a highly immunogenic vaccine candidate. Vaccine (2002) 20:771–778.
  • NARDIN EH, OLIVEIRA GA, CALVO-CALLE JM et al.: Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun. (2004) 72(11):6519–6527.
  • WALTHER M, DUNACHIE S, KEATING S et al.: Safety, immunogenicity and efficacy of a pre-erythrocytic malaria candidate vaccine, ICC-1132 formulated in Seppic ISA 720. Vaccine (2005) 23(7):857–864.
  • ANDERSON RJ, HANNAN CM, GILBERT SC et al.: Enhanced CD8* T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol (2004) 172:3094–3100.
  • MOORE AC, HILL AV: Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol Rev. (2004) 199:126–143.
  • WEBSTER DP, DUNACHIE S, VUOLA JM et al.: Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Nail Acad. Sci. USA (2005) 102:4836–4841.
  • MOORTHY VS, MCCONKEY S, ROBERTS M et al.: Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage Pfaktparum malaria in non-immune volunteers. Vaccine (2003) 21:2004–2011.
  • MCCONKEY SJ, MOORTHY V, WEBSTER D et at.: Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. (2003) 9:729–735.
  • BRUNA-ROMERO O, GONZALEZ-ASEGUINOLAZA G, HAFALLA JC, TSUJI M, NUSSENZWEIG RS: Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc. Nail Acad. Sci. USA (2001) 98:11491–11496.
  • BAROUCH DH, PAU MG, CUSTERS JH et al.: Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol (2004) 172(10):6290–6297.
  • ROGGERO MA, WEILENMANN C, BONELO A et al.: Plasmodium falciparum CS C-terminal fragment: preclinical evaluation and Phase I clinical studies. Parasitologia (1999) 41:421–424.
  • LOPEZ JA, WEILENMAN C, AUDRAN R et al.: A synthetic malaria vaccine elicits a potent CD8* and CD4* T lymphocyte immune response in humans. Implications for vaccination strategies. Eur. J. Immunol (2001) 31:1989–1998.
  • PRATO S, MAXWELL T, PINZ A et al.: MHC class I-restricted exogenous presentation of a synthetic 102-mer malaria vaccine polypeptide. Eur. j Immunol (2005) 35:681–689.
  • SMOOKER P, RAINCZUK A, KENNEDY N, SPITHILL T: DNA vaccines and their application against parasites - promise, limitations and potential solutions. BiotechnoL Ann. Rev. (2004) 10:189–236.
  • WANG R, DOOLAN DL, LE TP et al.: Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science (1998) 282:476–480.
  • WANG R, EPSTEIN J, BARACEROS FM et al.: Induction of CD4(*) T cell-dependent CD8(*) Type 1 responses in humans by a malaria DNA vaccine. Proc. Natl Acad. St-LUSA (2001) 98:10817–10822.
  • BALLOU WR, AREVELO-HERRERA M, CARUCCI D et al.: Update on the clinical development of candidate malaria vaccines. Am. J. Trop. Med. Hyg-. (2004) 71:239–247.
  • KURTIS JD, HOLLINGDALE MR, LUTY AJ, LANAR DE, KRZYCH U, DUFFY PE: Pre-erythrocytic immunity to Plasmodium fakiparum: the case for an LSA-1 vaccine. Trends Parasitol. (2001) 17:219–223.
  • HILLIER CJ, WARE LA, BARBOSA A et al.: Process development and analysis of liver-stage antigen 1, a preerythrocyte-stage protein-based vaccine for Plasmodium falciparum. Infect. Immun. (2005) 73:2109–2115.
  • DAUBERSIES P, THOMAS AW, MILLET P et al.: Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat. Med. (2000) 6:1258–1263.
  • PERLAZA BL, ZAPATA C, VALENCIA AZ et al.: Immunogenicity and protective efficacy ofPlasmodium falciparum liver-stage Ag-3 in Aotus lemurinus griseimembra monkeys. Eur. J. Immunol (2003) 33:1321–1327.
  • MORENO R, JIANG L, MOEHLE K et al.: Exploiting conformationally constrained peptidomimetics and an efficient human-compatible delivery system in synthetic vaccine design. Chembiochem. (2001) 5:838–843.
  • PFEIFFER B, PEDUZZI E, MOEHLE K et al.: A virosome-mimotope approach to synthetic vaccine design and optimization: synthesis, conformation, and immune recognition of a potential malaria-vaccine candidate. Angew. Chem. Int. Ed. Engl. (2003) 42(21):2368–2371.
  • MAHANTY S, SAUL A, MILLER LH: Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J. Exp. Biol. (2003) 206:3781–3788.
  • GOOD MF, XU H, WYKES M, ENGWERDA CR: Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Ann. Rev. Immunol (2005) 23:69–99.
  • OEUVRAY C, BOUHAROUN-TAYOUN H, GRAS-MASSE H et al.: Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium filciparum killing by cooperation with blood monocytes. Blood (1994) 84:1594–1602.
  • STRUIK SS, RILEY EM: Does malaria suffer from lack of memory? Immunol Rev. (2004) 201:268–290.
  • DIGGS CL, BALLOU WR, MILLER LH et al.: The major merozoite surface protein as a malaria vaccine target. Parasitol Today (1994) 9:300–302.
  • BLACKMAN MJ, HOLDER AA: Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem. Parasitol (1992) 50:307–315.
  • CHITNIS CE, BLACKMAN MJ: Host cellinvasion by malaria parasites. Parasitol Today (2000) 10:411–415.
  • MILLER LH, ROBERTS T, SHAHABUDDIN M, MCCUTCHAN TF: Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem. Parasitol (1993) 59:1–14.
  • MORGAN WD, BIRDSALL B, FRENKIEL TA et al.: Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. Mol Biol. (1999) 289:113–122.
  • GUEVARA-PATINO JA, HOLDER AA, MCBRIDE JS, BLACKMAN MJ: Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies./ Exp. Med. (1999) 186:1689–1699.
  • KUMAR S, YADAVA A. KEISTER DB et al.: Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mo/. Med. (1995) 1:332.
  • LEE EA, PALMER DR, FLANAGAN KL et al.: Induction of T helper Type 1 and 2 responses to 19-kilodalton merozoite surface protein 1 in vaccinated healthy volunteers and adults naturally exposed to malaria. Infect. Immun. (2002) 70(3):1417–1421.
  • ANGOV E, AUFERIO B TURGEON A et al.: Development and pre-clinical analysis of a Plasmodium falciparum merozoite surface protein-142 malaria vaccine. Mol Biochem. Parasitol (2003) 128:195–204.
  • PICHYANGKUL S, GETTAYACAMIN M, MILLERS et al.: Pre-clinical evaluation of the malaria vaccine candidate P falciparum MSP1-42 formulated with novel adjuvants or with alum. Vaccine (2004) 22:3831–3840.
  • DARKO CA, ANGOV E, COLLINS WE et al.: The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium filciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites. Infect. Immun. (2005) 73:287–297.
  • SINGH S, KENNEDY MC, LONG CA, SAUL AJ, MILLER LH, STOWERS AW: Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infect. Immun. (2003) 71:6766–6774.
  • MILES AP, MCCLELLAN HC, RAUSCH KM et al.: Montanide® ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine (2005) 23:2528–2537.
  • PERRAUT R, MARRAMA L, DIOUF B et al.: Antibodies to the conserved C-terminal domain of the Plasmodium filciparum merozoite surface protein 1 and to the merozoite extract and their relationship with in vitro inhibitory antibodies and protection against clinical malaria in a Senegalese village. J. Infect. Dis. (2005) 191:264–271.
  • PERERA KL, HANDUNNETTI SM, HOLM I, LONGACRE S, MENDIS K: Baculovirus merozoite surface protein 1 C-terminal recombinant antigens are highly protective in a natural primate model for human Plasmodium vivax malaria. Infect. Immun. (1998) 66:1500–1506.
  • KEITEL W, KESTER KE, ATMAR R et al.: Phase I trial of two recombinant vaccines containing the 19kD carboxy terminal fragment of Plasmodium filciparum merozoite surface protein 1 (MSP-119) and T-helper epitopes of tetanus toxoid. Vaccine (1999) 18:531–539.
  • MILLER LH, BARUCH BI, MARSH K, DOUMBO OK: The pathogenic basis of malaria. Nature (2002) 415:673–679.
  • POLLEY SD, MWANGI T, KOCKEN CH et al.: Human antibodies to recombinant protein constructs of Plasmodium filciparum apical membrane antigen 1 (AMA1) and their associations with protection from malaria. Vaccine (2004) 23:718–728.
  • NARUM DL, THOMAS AW: Differential localization of full-length and processed forms of PF83/AMA-1, an apical membrane antigen of Plasmodium falciparum merozoites. MoL Biochem. ParasitoL (1984) 67:59–68.
  • BANNISTER LH, HOPKINS JM, DLUZEWSKI AR et al.: Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J. Cell Sci. (2003) 116:3825–3834.
  • SILVIE O, FRANETICH JF, CHARRIN S et al.: A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J. Biol. Chem. (2004) 279:9490–9496.
  • PIZARRO JC, VULLIEZ-LE NORMAND B, CHESNE-SECK ML et al.: Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science (2005) 308(5720):408–411.
  • DUTTA S, HAYNES JD, BARBOSA A et al.: Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium fakiparum. Infect. Immun. (2005) 73:2116–2122.
  • CORTE A, MELLOMBO M, MASCIANTONIO R et al.: Allele specificity of naturally acquired antibody responses against Plasmodium falciparum apical membrane antigen 1. Infect. Immun. (2005) 73:422–430.
  • DUTTA S, LALITHA PV, WARE LA et al.: Purification, characterization, and immunogenicity of the refolded ectodomain of the Plasmodium falciparum apical membrane antigen 1 expressed in Escherichia coli. Infect. Immun. (2002) 70:3101–3110.
  • LALITHA PV WARE LA, BARBOSA A et al.: Production of the subdomains of the Plasmodium falciparum apical membrane antigen 1 ectodomain and analysis of the immune response. Infect. Immun. (2004) 72:4464–4470.
  • KENNEDY M, WANG J, ZHANG Y et al.: In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMAD: production and activity of an AMA1 vaccine and generation of a multiallelic response. Infect. Immun. (2002) 70:6948–6960.
  • STOWERS AW, KENNEDY MC, KEEGAN BP, SAUL A, LONG CA, MILLER LH: Vaccination of monkeys with recombinant Plasmodium falciparum apical membrane antigen 1 confers protection against blood-stage malaria. Infect. Immun. (2002) 70:6961–6967.
  • VULLIEZ-LE NORMAND B, PIZARRO JC, CHESNE-SECK ML et al.: Expression, crystallization and preliminary structural analysis of the ectoplasmic region of apical membrane antigen 1 from Plasmodium vivax, a malaria-vaccine candidate. Acta Crystallogr. D. Biol. Crystallogr. (2004) 60:2040–2043.
  • KOCKEN C, WITHERS-MARTINEZ C, DUBBELD M et al.: High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infect. Immun. (2002) 70:4471–4476.
  • PAN W, HUANG D, ZHANG Q et al.: Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro.ImmunoL (2004) 172:6167–6174.
  • MUELLER MS, RENARD A, BOATO F et al.: Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium faleipation apical membrane antigen 1. Infect. Immun. (2003) 71:4749–4758.
  • THEISEN M, SOE S, BRUNSTEDT K et al.: A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine (2004) 22:1188–1198.
  • LUKE TC, HOFFMAN: Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J. Exp. Biol. (2003) 206:3803–3808.
  • HURD H, AL-OLAYAN E, BUTCHER GA et al.: In vitro methods for culturing vertebrate and mosquito stages of Plasmodium. Microbes Infect. (2003) 5:321–327.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.