33
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for the treatment of myelodysplastic syndrome

&
Pages 569-590 | Published online: 05 Aug 2005

Bibliography

  • HEANEY M, GOLDE D: Myelodysplasia. N Engl. J. Med. (1999) 340(21):1649–1660.
  • MUFTI GJ: Pathobiology, classification, and diagnosis of myelodysplastic syndrome. Best. Pract. Res. Clin. HaematoL (2004) 17(4):543–557.
  • GATTERMAN N, SCHNEIDER W: Age-related incidence and other epidemiological aspects of myelodysplastic syndromes. Br. J. Haematol (1992) 82(2):358–367.
  • AUL C, GIAGOUNIDIS A, GERMING U: Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int. J. Hematol. (2001) 73(4):405–410.
  • NO AUTHORS LISTED: French registry of acute leukemia and myelodysplastic syndromes. Age distribution and hemogram analysis of the 4496 cases recorded during 1982-1983 and classified according to FAB criteria. Groupe Francais de Morphologic Hematologique. Cancer (1987) 60(6):1385–1394.
  • VALLESPI T, TORRABADELLA M, JULIA A et al.: Myelodysplastic syndromes: a study of 101 cases according to the FAB classification. Br. J. Haematol (1985) 61(1):83–92.
  • NISSE C, HAGUENOER JM, GRANDBASTIEN B et al.: Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France. Br. J. HaematoL (2001) 112(4):927–935.
  • PARK DJ, KOEFFLER HP: Therapy-related myelodysplastic syndromes. Semin. Hematol (1996) 33(3):256–273.
  • GREENBERG PL: The smoldering myeloid leukemic states: clinical and biologic features. Blood (1983) 61(6):1035–1044.
  • FENAUX P: Chromosome and molecular abnormalities in myelodysplastic syndromes. Int. j HematoL (2001) 73(4):429–437.
  • BENNETT JM, CATOVSKY D, DANIEL MT et al.: Proposals for the classification of the myelodysplastic syndromes. Br. J. Haematol (1982) 51(2):189–199.
  • VARDIMAN JL, HARRIS NL, BRUNNING RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood (2002) 100(7):2292–2302.
  • GREENBERG P, COX C, LEBEAU MM et al.: International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood (1997) 89(6):2079–2088.
  • LIES VELD JL, JORDAN CT, PHILLIPS GL: The hematopoietic stem cell in myelodysplasia. Stem Cells (2004) 22(4):590–599.
  • HOFMANN WK, DE VOS S, KOMOR M et al.: Characterization of gene expression of CD34* cells from normal and myelodysplastic bone marrow. Blood (2002) 100(10):3553–3560.
  • AUL C, GERMING U, GATTERMANN N, MINNING H: Increasing incidence of myelodysplastic syndromes: real or fictitious? Leuk. Res. (1998) 22(1):93–100.
  • JENSEN PD, HEICKENDORFF L, PEDERSEN B et al.: The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br. J. Haematol (1996) 94(2):288–299.
  • JENSEN PD, JENSEN IM, ELLEGAARD J: Desferrioxamine treatment reduces blood transfusion requirements in patients with myelodysplastic syndrome. Br. J. Haematol (1992) 80(1):121–124.
  • LIU DY, LIU ZD, HIDER RC: Oral iron chelators - development and application. Best Pract. Res. Clin. HaematoL (2002) 15(2):369–384.
  • NO AUTHORS LISTED: A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. Italian Cooperative Study Group for rHuEpo in Myelodysplastic Syndromes. Br. J. HaematoL (1998) 103(4):1070–1074.
  • HELLSTROM-LINDBERG E: Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br. J. Haematol (1995) 89(1):67–71.
  • ROSE EH, ABELS RI, NELSON RA, MCCULLOUGH DM, LESSIN L: The use of r-HuEpo in the treatment of anaemia related to myelodysplasia (MDS). Br. J. Haematol (1995) 89(4):831–837.
  • TERPOS E, MOUGIOU A, KOURAKLIS A et al.: Prolonged administration of erythropoietin increases erythroid response rate in myelodysplastic syndromes: a Phase II trial in 281 patients. Br. J. HaematoL (2002) 118(1):174–180.
  • STASI R, BRUNETTI M, TERZOLI E, ABRUZZESE E, AMADORI S: Once-weekly dosing of recombinant human erythropoietin alpha in patients with myelodysplastic syndromes unresponsive to conventional dosing. Ann. Oncol (2004) 15(10:1684–1690.
  • MANNONE L, GARDIN C, QUARRE MC: High response rate to darbopoetin alfa in 'low risk' MDS: results of a Phase II study. Blood. (2004) 104(11):69a (abstract).
  • MUSTO P, LANZA F, BALLEARI E et al.:Darbepoetin alpha for the treatment of anaemia in low-intermediate risk myelodysplastic syndromes. Br. J. Haematol (2005) 128(2):204–209.
  • NEGRIN RS, STEIN R, DOHERTY K et al.: Maintenance treatment of the anemia of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor and erythropoietin: evidence for in vivo synergy. Blood (1996) 87(10):4076–4081.
  • NEGRIN RS, STEIN R, VARDIMAN J et al.: Treatment of the anemia of myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor in combination with erythropoietin. Blood (1993) 82(3):737–743.
  • BLINDER VS, ROBOZ GJ: Hematopoietic growth factors in myelodysplastic syndromes. Curr. HematoL Rep. (2003) 2(6):453–458.
  • VADHAN-RAJ S, KEATING M, LEMAISTRE A et al.: Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl. J. Med. (1987) 317(25):1545–1552.
  • ANTIN JH, SMITH BR, HOLMES W, ROSENTHAL DS: Phase I/II study of recombinant human granulocyte-macrophage colony-stimulating factor in aplastic anemia and myelodysplastic syndrome. Blood (1988) 72(2):705–713.
  • WILLEMZE R, VAN DER LELY N, ZWIERZINA H et al.: A randomized phase-I/II multicenter study of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy for patients with myelodysplastic syndromes and a relatively low risk of acute leukemia. EORTC Leukemia Cooperative Group. Ann. HematoL (1992) 64(4):173–180.
  • NEGRIN RS, HAEUBER DH, NAGLER A et al.: Treatment of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor. A Phase I-II trial. Ann. Intern. Med. (1989) 110(12):976–984.
  • NEGRIN RS, HAEUBER DN, NAGLER A et al.: Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor. Blood (1990) 76(1):36–43.
  • GREENBERG PL: The role of hemopoieticgrowth factors in the treatment of myelodysplastic syndromes. Semin. OncoL (1992) 19(1):106–114.
  • GREENBERG P, TAYLOR K, LARSON R et al.: Phase III randomized multicenter trial of G-CSF versus observation for MDS [abstract]. Blood (1993) 83\(Suppl. 1):196a.
  • MANTOVANI L, LENTINI G, HENTSCHEL B et al.: Treatment of anaemia in myelodysplastic syndromes with prolonged administration of recombinant human granulocyte colony-stimulating factor and erythropoietin. Br. J. HaematoL (2000) 109(2):367–375.
  • HELLSTROM-LINDBERG E, NEGRIN R, STEIN R et al.: Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br. J. HaematoL (1997) 99(2):344–351.
  • CASADEVALL N, DURIEUX P, DUBOIS S: Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood (2004) 104(2):321–327.
  • STASI R, BRUNETTI M, TERZOLI E, AIVIADORI S: Sustained response to recombinant human erythropoietin and intermittent all-trans retinoic acid in patients with myelodysplastic syndromes. Blood (2002) 99(5):1578–1584.
  • ANDERSON JE: Bone marrow transplantation for myelodysplasia. Blood. Rev. (2000) 14(2):63–77.
  • APPELBAUM FR, ANDERSON J: Allogeneic bone marrow transplantation for myelodysplastic syndrome: outcomes analysis according to IPSS score. Leukemia (1998) 12(Suppl. 1):525–529.
  • RUNDE V, DE WITTE T, ARNOLD R et al.: Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. (1998) 21(3):255–261.
  • SIERRA J, PEREZ WS, ROZMAN C et al.: Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood (2002) 100(6):1997–2004.
  • ARNOLD R, DE WITTE T, VAN BIEZEN A et al.: Unrelated bone marrow transplantation in patients with myelodysplastic syndromes and secondary acute myeloid leukemia: an EBMT survey. European Blood and Marrow Transplantation Group. Bone Marrow Transplant. (1998) 21(12):1213–1216.
  • CASTRO-MALASPINA H, HARRIS RE, GAJEWSKI J et al.: Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood (2002) 99(6):1943–1951.
  • DE WITTE T, ZWAAN F, HERMANS J et al. Allogeneic bone marrow transplantation for secondary leukaemias and myelodysplastic syndrome: a survey by the Leukaemia Working Party of the European Bone Marrow Transplantation Group (EBMTG). Br. J. HaematoL (1990) 74(2):151–155.
  • ANDERSON JE, GOOLEY TA, SCHOCH G et al.: Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood (1997) 89(7):2578–2585.
  • MARTINO R, CABALLERO MD, SIMON JA et al.: Evidence for a graft-versus-leukemia effect after allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning in acute myelogenous leukemia and myelodysplastic syndromes. Blood (2002) 100(6):2243–2245.
  • HO AY, PAGLIUCA A, KENYON M et al.: Reduced-intensity allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome and acute myeloid leukemia with multilineage dysplasia using fludarabine, busulphan, and alemtuzumab (FBC) conditioning. Blood (2004) 104(6):1616–1623.
  • CUTLER CS, LEE SJ, GREENBERG P et al.: A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood (2004) 104(2):579–585.
  • DE WITTE T, VAN BIEZEN A, HERMANS J et al.: Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS. Chronic and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation. Blood (1997) 90(10):3853–3857.
  • WATTEL E, SOLARY E, LELEU X et al.:A prospective study of autologous bone marrow or peripheral blood stem cell transplantation after intensive chemotherapy in myelodysplastic syndromes. Groupe Francais des Myelodysplasies. Group Ouest-Est d'etude des Leucemies aigues myeloides. Leukemia (1999) 13(4):524–529.
  • OOSTERVELD M, MUUS P, SUCIU S et al.: Chemotherapy only compared to chemotherapy followed by transplantation in high risk myelodysplastic syndrome and secondary acute myeloid leukemia; two parallel studies adjusted for various prognostic factors. Leukemia (2002) 16(9):1615–1621.
  • OOSTERVELD M, SUCIU S, VERHOEF G et al.: The presence of an HLA-identical sibling donor has no impact on outcome of patients with high-risk MDS or secondary AML (sAML) treated with intensive chemotherapy followed by transplantation: results of a prospective study of the EORTC, EBMT, SAKK and GIMEMA Leukemia Groups (EORTC study 06921). Leukemia (2003) 17(5):859–868.
  • FOSS FM: Nucleoside analogs and antimetabolite therapies for myelodysplastic syndrome. Best. Pract. Res. Clin. HaematoL (2004) 17(4):573–584.
  • ESTEY E, THALL P, BERAN M, KANTARJIAN H, PIERCES, KEATING M: Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood (1997) 90(8):2969–2977.
  • SILVERMAN LR, HOLLAND JF, WEINBERG RS et al.: Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia (1993) 7(Suppl.1):21–92.
  • SILVERMAN LR, DEMAKOS EP, PETERSON BL et al.: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. (2002) 20(10):2429–2440.
  • HENIKOFF S, MATZKE MA: Exploring and explaining epigenetic effects. Trends. Genet. (1997) 13:293–295.
  • FISCHLE W, WANG Y, ALLIS CD: Histone and chromatin cross-talk. Cuff. Opin. Cell. Biol. (2003) 15(2):172–183.
  • HAKE SB, XIAO A, ALLIS CD: Linkingthe epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer. (2004) 90(4):761–769.
  • UCHIDA T, KINOSHITA T, NAGAI H et al.: Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood (1997) 90:1403–1409.
  • QUESNEL B, GUILLERM G, VEREECQUE R et al.: Methylation of the p15 (INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood (1998) 91: 2985–2990.
  • JAENISCH R, BIRD A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. (2003) 33(Suppl.):245–254.
  • GREGORY PD, WAGNER K, HORZ W: Histone acetylation and chromatin remodeling. Exp. Cell. Res. (2001) 265(2):195–202.
  • DECKERT J, STRUHL K: Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol. Cell. Biol. (2001) 21(8):2726–2735.
  • WI] J, GRUNSTEIN M: 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. (2000) 25(12):619–623.
  • BORROW J, STANTON VP, ANDRESEN JM et al.: The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. (1996) 14(1):33–41.
  • BHALLA K, LIST A: Histone deacetylaseinhibitors in myelodysplastic syndrome. Best. Pract. Res. Clin. HaematoL (2004) 17(4):595–611.
  • WANG J, SAUNTHARARAJA Y, REDNER RL et al.: Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res. (1999) 59(12):2766–2769.
  • WANG J, HOSHINO T, REDNER RL: ETO, fusion partner in t (8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoRlinSin3/ HDAC1 complex. Proc. NatL Acad. Sci. USA (1998) 95(18):10860–10865.
  • WARRELL RP, HE LZ, RICHON V, CALLEJA E, PANDOLFI PP: Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. NatL Cancer Inst. (1998) 90(21):1621–1625.
  • SANTINI V, KANTARJIAN HM, ISSA JP: Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. (2001) 134:573–586.
  • ZAGONELV, LO RE G, MAROTTA G et al.: 5-Aza-2'-deoxycytidine (Decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia (1993) 7(Suppl. 1):30–35.
  • WIJERMANS P, LUBBERT M, VERHOEF G et al.: Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter Phase II study in elderly patients. Clin. OncoL (2000) 18(5):956–962.
  • SABA H, ROSENFELD C, ISSA JP et al.:First Report of the Phase III North American Trial of Decitabine in Advanced Myelodysplastic Syndrome (MDS). Blood (2004) 104(11):67a (abstract).
  • PINA IC, GAUTSCHI JT, WANG GY et al.: Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem. (2003) 68(10):3866–3873.
  • SCHEINBART LS, JOHNSON MA, GROSS LA, EDELSTEIN SR, RICHARDSON BC: Procainamide inhibits DNA methyltransferase in a human T cell line. J. RheumatoL (1991) 18:530–534.
  • FANG MZ, WANG Y, AI N et al.: Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. (2003) 63(22):7563–7570.
  • CHENG JC, MATSEN CB, GONZALES FA et al.: Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. (2003) 95:399–409.
  • ISSA JP, GARCIA-MANERO G, GILES FJ et al.: Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (Decitabine) in hematopoietic malignancies. Blood (2004) 103:1635–1640.
  • GORE SD, BAYLIN SB, DAUSES T et al.: Changes in promoter methylation and gene expression in patients with MDS and MDS-AML treated with 5-azacitidine and sodium phenylbutyrate. Blood (2004) 104(11):469a (abstract).
  • JONES PA, BAYLIN SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. (2002) 3(6):415–428.
  • DRUMMOND DC, NOBLE CO, KIRPOTIN DB, GUO Z, SCOTT GK, BENZ CC: Clinical development of histone deacetylase inhibitors as anticancer agents. Ann. Rev. PharmacoL Toxicol. (2004) 45:495–528.
  • GOTTLICHER M, MINUCCI S, ZHU P et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO. J. (2001) 20(24):6969–6978.
  • KUENDGEN A. STRUPP C, AIVADO M et al.: Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood (2004) 104(5):1266–1269.
  • CARDUCCI MA, GILBERT J, BOWLING MK et al.: A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res. (2001) 7(10):3047–3055.
  • MARKS P, RIFKIND RA, RICHON VM, BRESLOW R, MILLER T, KELLY WK: Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer (2001) 1(3):194–202.
  • YOSHIDA M, KIJIMA M, AKITA M, BEPPU T: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. (1990) 265(28):17174–17179.
  • RICHON VM, WEBB Y, MERGER R et al.: Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl. Acad. Sci. USA (1996) 93(12):5705–5708.
  • FURUMAI R, KOMATSU Y, NISHINO N, KHOCHBIN S, YOSHIDA M, HORINOUCHI S: Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA (2001) 98(1):87–92.
  • KOMATSU Y, TOMIZAKI KY, TSUKAMOTO M et al.: Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res. (2001) 61(10:4459–4466.
  • GORE SD, CARDUCCI Mk Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin. Investig. Drugs (2000) 9(12):2923–2934.
  • PIEKARZ RL, ROBEY R, SANDOR V et al.: Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood (2001) 98(9):2865–2868.
  • SANDOR V, BAKKE S, ROBEY RW et al.: Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630170, in patients with refractory neoplasms. Clin. Cancer Res. (2002) 8(3):718–728.
  • MARSHALL JL, RIZVI N, KAUH J et al.: A Phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J. Exp. Ther. Oncol (2002) 2(0:325–332.
  • KELLY WK, RICHON VM, O'CONNOR 0 et al.: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer. Res. (2003) 9(10 Pt 1):3578–3588.
  • HEANEY M, O'CONNOR OA, RISHON V: Clinical experience with the histone deacetylase (HDAC) inhibitor suberoylanilide (SAHA) in heavily pretreated patients with hematological malignancies. Proc. Am .Soc. Clin. Oncol. (2003) 22:577a (abstract).
  • RICHARDSON P, SCHLOSSMAN RL, MITSIADES CS et al.: Phase I clinical trial of oral administration of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in patients with relapsed/refractory multiple meloma (MM). Blood (2004) 104(11):1503a (abstract).
  • LUCAS DM, DAVIS ME, PARTHUN MR et al.: The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia (2004) 18(7):1207–1214.
  • JABOIN J, WILD J, HAMIDI H et al.: MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. (2002) 62(20:6108–6115.
  • GOJO I, KARP JE, MANN D et al.: Phase I study of histone deacetylase inhibitor (HDI) MS-275 to adults with refractory or relapsed hematologic malignancies. Blood (2002) 100:559a (abstract).
  • GARCIA-MANERO G, KANTARJIAN H, SANCHEZ-GONZALEZ B et al.: Results of a Phase I/II Study of the combination of 5-aza-2'-deoxycytidine (DAC) and valproic acid (VPA) in patients (pts) with leukemia. Blood (2004) 104(11):263a (abstract).
  • FUINO L, BALI P, WITTMANN S et al.: Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. (2003) 2:971–984.
  • KIM MS, BLAKE M, BAEK JH, KOHLHAGEN G, POMMIER Y, CARRIER F: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. (2003) 63:7291–7300.
  • RAHMANI M, YU C, DAI Y et al.: Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. (2003) 63:8420–8427.
  • YU C, RAHMANI M, CONRAD D, SUBLER M, DENT P, GRANTS: The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl* cells sensitive and resistant to 5TI571. Blood (2003) 102:3765–3774.
  • RAHMANI M, YU C, REESE E et al.: Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/ 42 MAP kinase inactivation and abrogation of p21 (CIP1/WAF1) induction rather than AKT inhibition. Oncogene (2003) 22:6231–6242.
  • ALMENARA J, ROSATO R, GRANTS: Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia (2002) 16:1331–1343.
  • BEAUPRE DM, KURZROCK R: RAS and leukemia: from basic mechanisms to gene-directed therapy. J. Clin. Oncol (1999) 17(3):1071–1079.
  • REUTER CW, MORGAN MA, BERGMANN L: Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood (2000) 96(5):1655–1669.
  • SHIH TY, HATTORI S, CLANTON DJ et al.: Structure and function of p21 ras proteins. Gene Amplif Anal. (1986) 4:53–72.
  • BRUNNER TB, HAHN SM, GUPTA AK, MUSCHEL RJ, MCKENNA WG, BERNHARD EJ: Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res. (2003) 63(18):5656–5668.
  • LANCET JE, KARP JE: Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood (2003) 102:4527–4534.
  • KURZROCK R, CORTES J, KANTARJIAN H: Clinical development of farnesyltransferase inhibitors in leukemias and myelodysplastic syndrome. Semin. Hematol (2002) 39(4 Suppl. 3):20–24.
  • END DW, SMETS G, TODD AV et al.: Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. (2001) 61(1):131–137.
  • KARP JE, LANCET JE, KAUFMANN SH et al.: Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a Phase I clinical-laboratory correlative trial. Blood (2001) 97(1 0:3361–3369.
  • KURZROCK R, ALBITAR M, CORTES JE et al.: Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J. Clin. Oncol. (2004) 22(7):1287–1292.
  • LANCET JE, GOTLIB J, GOJO I: Tipifarnib (ZARNESTRATm) in previously untreated poor-risk AML of the elderly: updated results of a multicenter Phase II trial. Abstracts of the American Society of Hematology. Blood (2004) 104(11):874a (abstract).
  • FELDMAN EJ, CORTES J, HOLYOAKE TL et al.: Continuous oral Lonafarnib (Sarasar) for the treatment of patients with myelodysplastic syndrome. Blood (2003) 102 (11) :421a (abstract).
  • RAVOET C, MINEUR P, ROBIN V et al.: Phase I-II study of farnesyl transferase inhibitor (FTI), 5CH66336, in patients with myelodysplastic syndrome (MDS) or secondary acute myeloid leukemia (sAML). Blood (2002) 100:794a (abstract).
  • DRUKER BJ, TALPAZ M, RESTA DJ et al.: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl. J. Med. (2001) 344(101031–1037.
  • LEVITZKI A: PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev. (2004) 15(4):229–235.
  • APPERLEY JF, GARDEMBAS M, MELO JV et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl. J. Med. (2002) 347(7):481–487.
  • KARIN M: Mitogen activated protein kinases as targets for development of novel anti-inflammatory drugs. Ann. Rheum. Dis. (2004) 63\(Suppl. 2):ii62-ii64.
  • WADA T, PENNINGER JM: Mitogen-activated protein kinases in apoptosis regulation. Oncogene (2004) 23(16):2838–2849.
  • MILELLA M, KORNBLAU SM, ANDREEFF M: The mitogen-activated protein kinase signaling module as a therapeutic target in hematologic malignancies. Rev. Clin. Exp. Hematol (2003) 7(2):160–190.
  • NGUYEN AN, REDDY M, HENSON M et al.: SCIO-469, a potent and selective inhibitor of p38a MAPK, normalizes the bone marrow microenvironment and inhibits multiple myeloma cell proliferation in in vitro and in vivo models. Abstracts of the American Society of Hematology. Blood (2004) 104(11):1501a (abstract).
  • NAVAS TA, NGUYEN AN, MA JY et al.: Inhibition of p38 MAPK by SCIO-469 suppresses TNF generation and promotes CD34* cell survival in an in vitro MDS cell culture model. Abstracts of the American Society of Hematology. Blood (2004) 104(11):3424a (abstract).
  • NEWTON AC: Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. (2001) 101(8):2353–2364.
  • FRANKLIN RA, MCCUBREY JA: Kinases: positive and negative regulators of apoptosis. Leukemia (2000) 14(12):2019–2034.
  • STRAIR RK, SCHAAR D, GOODELL L et al.: Administration of a phorbol ester to patients with hematological malignancies: preliminary results from a Phase I clinical trial of 12-0-tetradecanoylphorbol-13-acetate. Clin. Cancer Res. (2002) 8(8):2512–2518.
  • GEORGE P, BALI P, COHEN P et al.: Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res. (2004) 64(10):3645–3652.
  • MONNERAT C, HENRIKSSON R, LE CHEVALIER T et al.: Phase I study of PKC412 (N-benzoyl-staurosporine), a novel oral protein kinase C inhibitor, combined with gemcitabine and cisplatin in patients with non-small-cell lung cancer. Ann. Oncol (2004) 15(2):316–323.
  • VIRCHIS A, GANESHAGURU K, HART S et al.: A novel treatment approach for low grade lymphoproliferative disorders using PKC412 (CGP41251), an inhibitor of protein kinase C. Hematol J. (2002) 3(3):131–136.
  • FOLKMAN J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. (1995) 1(1):27–31.
  • ALEXANDRAKIS MG, PASSAM FJ, GANOTAKIS E et al.: Bone marrow microvascular density and angiogenic growth factors in multiple myeloma. Clin. Chem. Lab. Med. (2004) 42(10):1122–1126.
  • ALEXANDRAKIS MG, PASSAM FH, PAPPA CA et al.: Relation between bone marrow angiogenesis and serum levels of angiogenin in patients with myelodysplastic syndromes. Leuk. Res. (2005) 29(1):41–46.
  • PRUNERI G, BERTOLINI F, SOLIGO D et al.: Angiogenesis in myelodysplastic syndromes. Br. J. Cancer. (1999) 81(8):1398–1401.
  • PADRO T, RUIZ S, BIEKER R et al.: Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood (2000) 95(8):2637–2644.
  • ALBITAR M: Angiogenesis in acute myeloid leukemia and myelodysplastic syndrome. Acta. Haematol (2001) 106(4):170–176.
  • FADERL S, KANTARJIAN HM: Novel therapies for myelodysplastic syndromes. Cancer (2004) 101(2):226–241.
  • ESTEY EH: Modulation of angiogenesis in patients with myelodysplastic syndrome. Best. Pract. Res. Clin. Haematol (2004) 17(4):623–639.
  • BELLAMY WT, RICHTER L, SIRJANI D et al.: Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood (2001) 97(5):1427–1434.
  • BROXMEYER HE, COOPERS, LI ZH et al.: Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int. J. Hematol (1995) 62(0203–215.
  • HURWITZ H, FEHRENBACHER L, NOVOTNY W et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl. J. Med. (2004) 350(23):2335–2342.
  • KARP JE, GOJO I, PILI R et al.: Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-D-arabinofitranosylcytosine, mitoxantrone, and bevacizumab. Clin. Cancer Res. (2004) 10(11):3577–3585.
  • GOTLIB J, JAMIESON CHM, LIST A et al.: Phase II study of bevacizumab (anti-VEGF humanized monoclonal antibody) in patients with myelodysplastic syndrome (MDS). Preliminary results. Blood (2003) 102:425a (abstract).
  • JAYSON GC, ZWEIT J, JACKSON A et al.: Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies./ Nail. Cancer. Inst. (2002) 94(19):1484–1493.
  • GLADE-BENDER J, KANDEL JJ, YAMASHIRO DJ: VEGF blocking therapy in the treatment of cancer. Expert Opin. Biol. Ther. (2003) 3(2):263–276.
  • GILES FJ, COOPER MA, SILVERMAN L et al.: Phase II study of SU5416 - a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor in patients with refractory myeloproliferative diseases. Cancer (2003) 97(8):1920–1928.
  • GILES FJ, STOPECK AT, SILVERMAN LR et al.: 5U5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood (2003) 102(3):795–801.
  • FIEDLER W, SERVE H, DOHNER H et al.: A Phase I study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood (2005) 105(3):986–993.
  • O'FARRELL AM, FORAN JM, FIEDLER W et al: An innovative Phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin. Cancer Res. (2003) 9(15):5465–5476.
  • DREVS J: PTK/ZK (Novartis). IDrugs (2003) 6(8):787–794.
  • THOMAS AL, MORGAN B, DREVS J et al.: Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin. OncoL (2003) 30(3 Suppl. 0:32–38.
  • D'AMATO RJ, LOUGHNAN MS, FLYNN E, FOLKMAN J: Thalidomide is an inhibitor of angiogenesis. Proc. Nail. Acad. Sci. USA (1994) 91(9):4082–4085.
  • SAMPAIO EP, SARNO EN, GALILLY R, COHN ZA, KAPLAN G: Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J. Exp. Med. (1991) 173(3):699–703.
  • MOREIRA AL, SAMPAIO EP, ZMUIDZINAS A, FRINDT P, SMITH KA, KAPLAN G: Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J. Exp. Med. (1993) 177(6):1675–1680.
  • RAZA A, MEYER P, DUTT D et al.: Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood (2001) 98(4):958–965.
  • STRUPP C, GERMING U, AIVADO M, MISGELD E, HAAS R, GATTERMANN N: Thalidomide for the treatment of patients with myelodysplastic syndromes. Leukemia (2002) 16(1):1–6.
  • MUSTO P: Thalidomide therapy for myelodysplastic syndromes: current status and future perspectives. Leuk. Res. (2004) 28(4):325–332.
  • MUSTO P, FALCONE A, SANPAOLO G, BISCEGLIA M, MATERA R, CARELLA AM: Thalidomide abolishes transfusion-dependence in selected patients with myelodysplastic syndromes. Haematologica (2002) 87(8):884–886.
  • MORENO-ASPITIA A: Multicenter Phase II trial of thalidomide (Thal) in adult patients with myelodysplastic syndromes (MDS). Blood (2002) 100(11):96a.
  • LIST A, KURTIN S, ROE DJ et al.: Efficacy of lenalidomide in myelodysplastic syndromes. N EngL J. Med. (2005) 352(6):549–557.
  • SAIF MW, HOPKINS JL, GORE SD: Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk. Lymphoma (2002) 43(11):2083–2092.
  • BARRETT J, SAUTHARARAJA Y, MOLLDREM J: Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin. HematoL (2000) 37:15–29.
  • MOLLDREM JJ, LEIFER E, BAHCECI E et al.: Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann. Intern. Med. (2002) 137(3):156–163.
  • KILLICK SB, MUFTI G, CAVENAGH JD et al.: A pilot study of antithymocyte globulin (ATG) in the treatment of patients with low-risk' myelodysplasia. Br. J. HaematoL (2003) 120(4):679–684.
  • JONASOVA A, NEUWIRTOVA R, CERMAK J et al.: Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br. J. HaematoL (1998) 100:304–309.
  • SAUNTHARARAJA Y, NAKAMURA R, NAM JM et al.: HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood (2002) 100:1570–1574.
  • KOCHENDERFER JN, KOBAYASHI S, WIEDER ED, SU C, MOLLDREM JJ: Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood (2002) 100(103639–3645.
  • ROSENFELD C, BEDELL C: Pilot study of recombinant human soluble tumor necrosis factor receptor (TNFR:Fc) in patients with low-risk myelodysplastic syndrome. Leuk. Res. (2002) 26:721–724.
  • KITAGAWA M, SAITO I, KUWATA T et al.: Overexpression of tumor necrosis factor (TNF) - and interferon (IFN) - by bone marrow cells from patients with myelodysplastic syndromes. Leukemia (1997) 11:2049–2054.
  • MACIEJEWSKI JP, SELLERI C, ANDERSON S, YOUNG N: Fas antigen expression in CD34* human bone marrow cells is induced by interferon-and tumor necrosis a and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood (1995) 85: 3183–3190.
  • MOLINAR L, BERKI T, HUSSAIN A, NEMETH P, LOSONCZY H: Detection of TNF alpha expression in the bone marrow and determination of TNF production of peripheral blood mononuclear cells in myelodysplastic syndrome. PathoL Oncol. Res. (2000) 6:18–23.
  • DEEG HF, JIANG PYZ, HOLMBERG LA, SCOTT B, PETERSDORF EW, APPELBAUM FR: Hematologic responses of patients with MDS to antithymocyte globulin plus etanercept correlate with improved flow scores of marrow cells. Leuk. Res. (2004) 28:1177–1180.
  • STASI R, AMADORI S: Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes. Br. J. HaematoL (2002) 116(2):334–337.
  • RAZA A, LISAK LA, TAHIR S et al.: Hematologic improvement in response to anti-tumor necrosis factor (TNF) therapy with remicade in patients with myelodysplastic syndromes (MDS). Blood (2002) 100:795a (abstract).
  • RUSCOE JE, ROSARIO LA, WANG T et al. Pharmacologic or genetic manipulation of glutathione S-transferase PI-1 (GSTpi) influences cell proliferation pathways. J. Pharmacol. Exp. Ther. (2001) 298(1):339–345.
  • CALLANDER N, OCH0A-BAYONA JL, PIRO L et al.: Hematologic improvement following treatment with TLK199 (Telintram), a novel glutathione analog inhibitor of GST PI-1, in myelodysplastic syndrome (MDS): interim results of a dose-ranging Phase Ha study. Blood (2004) 104(11):1428a (abstract).
  • EMANUEL PD, WANG Z, CAI D et al.: TLK199 (Telintram), a novel glutathione analog inhibitor of GST PI-1, causes proliferation and maturation of bone marrow precursor cells and correlates with clinical improvement in myelodysplastic syndrome (MDS) patients in a Phase Ha study. Blood (2004) 104(11):2372a (abstract).
  • VEY N, DREYFUS F, GUERCI A et al.: Trisenox® (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary results of a Phase I/II study. Blood (2004) 104(11):1433a (abstract).
  • LIST AF, SCHILLER GJ, MASON J et al.: Trisenox® (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary findings in a Phase II clinical study. Blood 102:423a (abstract).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.