680
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Recent developments on immunotherapy for brain cancer

, , , &
Pages 181-202 | Published online: 25 Apr 2012

Bibliography

  • de Micco C. Immunology of tumors of the central nervous system. Bull Cancer 1989;76(1):17-31
  • Sawamura Y, de Tribolet N. Immunobiology of brain tumors. Adv Tech Stand Neurosurg 1990;17:3-64
  • Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 2006;11(2):152-64
  • Stupp R, Mason WP, van den Bent MJ, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987-96
  • Bhondeley MK, Mehra RD, Mehra NK, Imbalances in T cell subpopulations in human gliomas. J Neurosurg 1988;68(4):589-93
  • Black KL, Chen K, Becker DP, Merrill JE. Inflammatory leukocytes associated with increased immunosuppression by glioblastoma. J Neurosurg 1992;77(1):120-6
  • Huettner C, Czub S, Kerkau S, Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 1997;17(5A):3217-24
  • Huettner C, Paulus W, Roggendorf W. Increased amounts of IL-10 mRNA in anaplastic astrocytomas and glioblastoma multiforme. Verh Dtsch Ges Pathol 1994;78:418-22
  • Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 1995;146(2):317-22
  • Tran TT, Uhl M, Ma JY, Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 2007;9(3):259-70
  • Mitchell DA, Cui X, Schmittling RJ, Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 2011;118(11):3003-12
  • Curtin JF, Candolfi M, Fakhouri TM, Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS One 2008;3(4):e1983
  • Rolle CE, Sengupta S, Lesniak MS. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am 2010;21(1):201-14
  • Stavrou D, Anzil AP, Weidenbach W, Rodt H. Immunofluorescence study of lymphocytic infiltration in gliomas. Identification of T-lymphocytes. J Neurol Sci 1977;33(1-2):275-82
  • Clark WC, Bressler J. Transforming growth factor-beta-like activity in tumors of the central nervous system. J Neurosurg 1988;68(6):920-4
  • Sawamura Y, Abe H, Aida T, Isolation and in vitro growth of glioma-infiltrating lymphocytes, and an analysis of their surface phenotypes. J Neurosurg 1988;69(5):745-50
  • El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 2006;105(3):430-7
  • El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 2006;8(3):234-43
  • Fecci PE, Mitchell DA, Whitesides JF, Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006;66(6):3294-302
  • Kong LY, Wei J, Sharma AK, A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunol Immunother 2009;58(7):1023-32
  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 2009;58(10):1627-34
  • Maes W, Rosas GG, Verbinnen B, DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 2009;11(5):529-42
  • Sengupta S, Nandi S, Hindi ES, Short hairpin RNA-mediated fibronectin knockdown delays tumor growth in a mouse glioma model. Neoplasia 2010;12(10):837-47
  • Morimura T, Neuchrist C, Kitz K, Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol 1990;80(3):287-94
  • Kiefer R, Supler ML, Toyka KV, Streit WJ. In situ detection of transforming growth factor-beta mRNA in experimental rat glioma and reactive glial cells. Neurosci Lett 1994;166(2):161-4
  • Rossler K, Neuchrist C, Kitz K, Expression of leucocyte adhesion molecules at the human blood-brain barrier (BBB). J Neurosci Res 1992;31(2):365-74
  • Stewart PA, Magliocco M, Hayakawa K, A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc Res 1987;33(2):270-82
  • Lowe D, Schieweck C, Meier-Ruge W, The effect of “ouabain” on the ultrastructure of cerebral arterioles and surrounding tissue, studied by a cannulation of a cerebral artery. Res Exp Med (Berl) 1975;166(2):97-114
  • Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs 2001;169(1):1-11
  • Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005;97(6):512-23
  • Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987;325(6101):253-7
  • Curiel TJ, Coukos G, Zou L, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942-9
  • Jordan JT, Sun W, Hussain SF, Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 2008;57(1):123-31
  • Huang H, Liu Y, Xiang J. Synergistic effect of adoptive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell Immunol 2002;217(1-2):12-22
  • Riva M, Salmaggi A, Marchioni E, Tumour-associated epilepsy: clinical impact and the role of referring centres in a cohort of glioblastoma patients. A multicentre study from the Lombardia Neurooncology Group. Neurol Sci 2006;27(5):345-51
  • Van Meir EG, Hadjipanayis CG, Norden AD, Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010;60(3):166-93
  • Hegi ME, Diserens AC, Gorlia T, MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352(10):997-1003
  • Gorlia T, van den Bent MJ, Hegi ME, Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 2008;9(1):29-38
  • McLendon R, Friedman A, Bisner D, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061-8
  • Verhaak RG, Hoadley KA, Purdom E, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98-110
  • Murat A, Migliavacca E, Gorlia T, Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008;26(18):3015-24
  • Bao S, Wu Q, McLendon RE, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444(7120):756-60
  • Bleau AM, Hambardzumyan D, Ozawa T, PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 2009;4(3):226-35
  • Wei J, Barr J, Kong LY, Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 2010;16(2):461-73
  • Pistollato F, Abbadi S, Rampazzo E, Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010;28(5):851-62
  • Spence AM, Muzi M, Swanson KR, Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 2008;14(9):2623-30
  • Wynn ML, Merajver SD, Schnell S. Unraveling the complex regulatory relationships between metabolism and signal transduction in cancer. Adv Exp Med Biol 2012;736:179-89
  • Khan RB, Raizer JJ, Malkin MG, A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro Oncol 2002;4(1):39-43
  • Fadul CE, Fisher JL, Gui J, Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol 2011;13(4):393-400
  • Jain RK, di Tomaso E, Duda DG, Angiogenesis in brain tumours. Nat Rev Neurosci 2007;8(8):610-22
  • Salmaggi A, Eoli M, Frigerio S, Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 2003;62(3):297-303
  • Schmidt NO, Westphal M, Hagel C, Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999;84(1):10-18
  • Zhou YH, Tan F, Hess KR, Yung WK. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 2003;9(9):3369-75
  • Vredenburgh JJ, Desjardins A, Herndon JE II, Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13(4):1253-9
  • Friedman HS, Prados MD, Wen PY, Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009;27(28):4733-40
  • Kreisl TN, Zhang W, Odia Y, A phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro Oncol 2011;13(10):1143-50
  • De Braganca KC, Janjigian YY, Azzoli CG, Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J Neurooncol 2010;100(3):443-7
  • Chira C, Jacob J, Derhem N, Preliminary experience of whole-brain radiation therapy (WBRT) in breast cancer patients with brain metastases previously treated with bevacizumab-based chemotherapy. J Neurooncol 2011;105(2):401-8
  • Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005;69(Suppl 3):11-16
  • Castro MG, Candolfi M, Kroeger K, Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011;11(3):155-80
  • Reardon DA, Wen PY, Desjardins A, Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 2008;8(4):541-53
  • American Cancer Society. Cancer facts and figures 2011. 2011; Available from: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf
  • Kutikova L, Bowman L, Chang S, Long S. How costly is brain cancer? Healthcare services use and costs from across the US. J Clin Oncol 2004;22(14S):1559
  • Patterson H. The financial impact of brain tumors on patients and families: a summary of findings. National Brain Tumor Foundation 2007; Available from: http://www.braintumor.org/assets/docs/Nobody_Can_Afford_a_Brain_Tumor.pdf
  • Mariotto AB, Yabroff KR, Shao Y, Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 2011;103(2):117-28
  • Ahmed AU, Rolle CE, Tyler MA, Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther 2010;18(10):1846-56
  • Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol 2011;13(12):1308-23
  • Tran Thang NN, Derouazi M, Philippin G, Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res 2010;70(12):4829-39
  • Heimberger AB, Kong LY, Abou-Ghazal M, The role of tregs in human glioma patients and their inhibition with a novel STAT-3 inhibitor. Clin Neurosurg 2009;56:98-106
  • Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 2008;14(16):5166-72
  • Jacobs JF, Idema AJ, Bol KF, Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 2010;225(1-2):195-9
  • Bruna A, Darken RS, Rojo F, High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007;11(2):147-60
  • Jung Y, Joo KM, Seong DH, Identification of prognostic biomarkers for glioblastomas using protein. Int J Oncol 2012;40(4):1122-32
  • Seoane J, Le HV, Shen L, Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117(2):211-23
  • Nitta T, Hishii M, Sato K, Okumura K. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 1994;649(1-2):122-8
  • Wang C, Cao S, Yan Y, TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer 2010;10:415
  • Urry Z, Ligation of TLR9 induced on human IL-10-secreting Tregs by 1alpha,25-dihydroxyvitamin D3 abrogates regulatory function. J Clin Invest 2009;119(2):387-98
  • Jacobs C, Duewell P, Heckelsmiller K, An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer 2011;128(4):897-907
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008;359(5):492-507
  • Heimberger AB, Hlatky R, Suki D, Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005;11(4):1462-6
  • Del Vecchio CA, Wong AJ. Rindopepimut, a 14-mer injectable peptide vaccine against EGFRvIII for the potential treatment of glioblastoma multiforme. Curr Opin Mol Ther 2010;12(6):741-54
  • Debinski W, Obiri NI, Powers SK, Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995;1(11):1253-8
  • Debinski W, Gibo DM, Slagle B, Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol 1999;15(3):481-6
  • Joshi BH, Leland P, Asher A, In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res 2001;61(22):8058-61
  • Mohanam S, Proteolysis and invasiveness of brain tumors: role of urokinase-type plasminogen activator receptor. J Neurooncol 1994;22(2):153-60
  • Yamamoto M, Sawaya R, Mohanam S, Expression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo. Cancer Res 1994;54(14):3656-61
  • Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins (Basel) 2010;2(11):2645-62
  • Kunwar S, Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007;25(7):837-44
  • Rand RW, Kreitman RJ, Patronas N, Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 2000;6(6):2157-65
  • Puri RK. Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. Toxicol Pathol 1999;27(1):53-7
  • Kunwar S, Chang S, Westphal M. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 2010;12(8):871-81
  • Mueller S, Polley MY, Lee B, Effect of imaging and catheter characteristics on clinical outcome for patients in the PRECISE study. J Neurooncol 2011;101(2):267-77
  • Sampson JH, Akabani G, Archer GE, Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003;65(1):27-35
  • Rustamzadeh E, Li C, Doumbia S, Targeting the over-expressed urokinase-type plasminogen activator receptor on glioblastoma multiforme. J Neurooncol 2003;65(1):63-75
  • Rustamzadeh E, Hall WA, Todhunter DA, Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int J Cancer 2007;120(2):411-19
  • Vallera DA, Li C, Jin N, Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 2002;94(8):597-606
  • Todhunter DA, Hall WA, Rustamzadeh E, A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel 2004;17(2):157-64
  • Rustamzadeh E, Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol 2006;77(3):257-66
  • Rustamzadeh E, Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. Int J Cancer 2006;118(10):2594-601
  • Heimberger AB, Sampson JH. The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther 2009;9(8):1087-98
  • Heimberger AB, Sun W, Hussain SF, Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 2008;10(1):98-103
  • Wheeler CJ, Das A, Liu G, Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 2004;10(16):5316-26
  • Liau LM, Prins RM, Kiertscher SM, Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005;11(15):5515-25
  • Sampson JH, Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722-9
  • Sampson JH, Archer GE, Mitchell DA, An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2009;8(10):2773-9
  • Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003;15(2):138-47
  • Curtin JF, King GD, Barcia C, Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 2006;176(6):3566-77
  • Ali S, Curtin JF, Zirger JM, Inflammatory and anti-glioma effects of an adenovirus expressing human soluble Fms-like tyrosine kinase 3 ligand (hsFlt3L): treatment with hsFlt3L inhibits intracranial glioma progression. Mol Ther 2004;10(6):1071-84
  • Mineharu Y, King GD, Muhammad AK, Engineering the brain tumor microenvironment enhances the efficacy of dendritic cell vaccination: implications for clinical trial design. Clin Cancer Res 2011;17(14):4705-18
  • Fecci PE, Ochiai H, Mitchell DA, Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007;13(7):2158-67
  • Prieto PA, Yang JC, Sherry RM, CTLA-4 Blockade with Ipilimumab: Long-Term Follow-up of 177 Patients with Metastatic Melanoma. Clin Cancer Res 2012
  • Li L, A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 2010;113(2):192-8
  • Veeravagu A, Liu Z, Niu G, Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res 2008;14(22):7330-9
  • Aghi M, Martuza RL. Oncolytic viral therapies - the clinical experience. Oncogene 2005;24(52):7802-16
  • Niranjan A, Moriuchi S, Lunsford LD, Effective treatment of experimental glioblastoma by HSV vector-mediated TNF alpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration. Mol Ther 2000;2(2):114-20
  • King GD, Kroeger KM, Bresee CJ, Flt3L in combination with HSV1-TK-mediated gene therapy reverses brain tumor-induced behavioral deficits. Mol Ther 2008;16(4):682-90
  • King GD, Muhammad AK, Curtin JF, Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 2008;10(1):19-31
  • Ghulam Muhammad AK, Candolfi M, Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 2009;15(19):6113-27
  • Okada H, Pollack IF, Lotze MT, Gene therapy of malignant gliomas: a phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response. Hum Gene Ther 2000;11(4):637-53
  • Ilvesaro JM, Merrell MA, Li L, Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol Cancer Res 2008;6(10):1534-43
  • Schmausser B, Andrulis M, Endrich S, Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 2005;295(3):179-85
  • Droemann D, Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res 2005;6:1
  • Ilvesaro JM, Merrell MA, Swain TM, Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 2007;67(7):774-81
  • Leng L, Jiang T, Zhang Y. TLR9 expression is associated with prognosis in patients with glioblastoma multiforme. J Clin Neurosci 2012;19(1):75-80
  • Merrell MA, Ilvesaro JM, Lehtonen N, Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 2006;4(7):437-47
  • Grauer OM, Molling JW, Bennink E, TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 2008;181(10):6720-9
  • El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 2006;54(6):526-35
  • Meng Y, Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 2005;116(6):992-7
  • Zhang M, Kleber S, Rohrich M, Blockade of TGF-beta signaling by the TGFbetaR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 2011;71(23):7155-67
  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012
  • Brahmer JR, Drake CG, Wollner I, Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010;28(19):3167-75
  • Fourcade J, CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 2012
  • Woo SR, Turnis ME, Goldberg MV, Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012
  • Francisco LM, Salinas VH, Brown KE, PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206(13):3015-29
  • Amarnath S, Mangus CW, Wang JC, The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011;3(111):111ra120
  • Miyazaki T, Moritake K, Yamada K, Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J Neurosurg 2009;111(2):230-7
  • Avril T, Saikali S, Vauleon E, Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions. J Neuroimmunol 2010;225(1-2):22-33
  • Chung DJ, Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 2009;114(3):555-63
  • Sharma MD, Baban B, Chandler P, Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007;117(9):2570-82
  • Pallotta MT, Orabona C, Volpi C, Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12(9):870-8
  • Mellor AL, Keskin DB, Johnson T, Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol 2002;168(8):3771-6
  • Huang L, Baban B, Johnson BA III, Mellor AL. Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int Rev Immunol 2010;29(2):133-55
  • Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro Oncol 2011;13(1):3-13
  • Wainwright DA, Sengupta S, Han Y, The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma. PLoS One 2010;5(10):e15390
  • Nishikawa R, Ji XD, Harmon RC, A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994;91(16):7727-31
  • Nagane M, Coufal F, Lin H, A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 1996;56(21):5079-86
  • Shinojima N, Tada K, Shiraishi S, Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003;63(20):6962-70
  • Rahaman SO, Sharma P, Harbor PC, IL-13R(alpha)2, a decoy receptor for IL-13 acts as an inhibitor of IL-4-dependent signal transduction in glioblastoma cells. Cancer Res 2002;62(4):1103-9
  • Wu AH, Low WC. Molecular cloning and identification of the human interleukin 13 alpha 2 receptor (IL-13Ra2) promoter. Neuro Oncol 2003;5(3):179-87
  • Joshi BH, Leland P, Silber J, IL-4 receptors on human medulloblastoma tumours serve as a sensitive target for a circular permuted IL-4-Pseudomonas exotoxin fusion protein. Br J Cancer 2002;86(2):285-91
  • Puri RK. Cytotoxins directed at interleukin-4 receptors as therapy for human brain tumors. Methods Mol Biol 2001;166:155-76
  • Heimberger AB, Archer GE, Crotty LE, Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 2002;50(1):158-64; discussion 164-6
  • Heimberger AB, Crotty LE, Archer GE, Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 2000;103(1):16-25
  • Cho DY, Yang WK, Lee HC, Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 2011
  • Chang CN, Huang YC, Yang DM, A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci 2011;18(8):1048-54
  • Fadul CE, Fisher JL, Hampton TH, Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 2011;34(4):382-9
  • Okada H, Kalinski P, Ueda R, Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011;29(3):330-6
  • Miyatake S, Handa H, Yamashita J, Induction of human glioma-specific cytotoxic T-lymphocyte lines by autologous tumor stimulation and interleukin 2. J Neurooncol 1986;4(1):55-64
  • Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 and autologous lymphokine-activated killer cells in the treatment of malignant glioma. Preliminary report. J Neurosurg 1986;64(5):743-9
  • Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res 1986;46(4 Pt 2):2101-4
  • Jacobs SK, Wilson DJ, Melin G, Interleukin-2 and lymphokine activated killer (LAK) cells in the treatment of malignant glioma: clinical and experimental studies. Neurol Res 1986;8(2):81-7
  • Kitahara T, Watanabe O, Yamaura A, Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J Neurooncol 1987;4(4):329-36
  • Yoshida S, Tanaka R, Takai N, Ono K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 1988;48(17):5011-16
  • Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 2009;9(11):1663-74
  • Hau P, Jachimczak P, Schlaier J, Bogdahn U. TGF-beta2 signaling in high-grade gliomas. Curr Pharm Biotechnol 2011
  • Hau P, Jachimczak P, Schlingensiepen R, Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007;17(2):201-12
  • Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S. Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 2008;177:137-50
  • Zhang M, Kleber S, Rohrich M, Blockade of TGF-beta signaling by the TGFbetaR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 2011;71(23):7155-67
  • Zhang M, Herion TW, Timke C, Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-beta receptor I kinase inhibitor LY2109761. Neoplasia 2011;13(6):537-49
  • Lohr J, Ratliff T, Huppertz A, Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res 2011;17(13):4296-308
  • Olson JJ, McKenzie E, Skurski-Martin M, Phase I analysis of BCNU-impregnated biodegradable polymer wafers followed by systemic interferon alfa-2b in adults with recurrent glioblastoma multiforme. J Neurooncol 2008;90(3):293-9
  • Buckner JC, Brown LD, Kugler JW, Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma. J Neurosurg 1995;82(3):430-5
  • Groves MD, Puduvalli VK, Gilbert MR, Two phase II trials of temozolomide with interferon-alpha2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer 2009;101(4):615-20
  • Dillman RO, Shea WM, Tai DF, Interferon-alpha2a and 13-cis-retinoic acid with radiation treatment for high-grade glioma. Neuro Oncol 2001;3(1):35-41
  • Grauer OM, Nierkens S, Bennink E, CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007;121(1):95-105
  • Grauer OM, Sutmuller RP, van Maren W, Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 2008;122(8):1794-802
  • Hussain SF, Kong LY, Jordan J, A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 2007;67(20):9630-6
  • Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 2008;6(5):675-84
  • Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, The NFkappaB pathway: a therapeutic target in glioblastoma. Oncotarget 2011;2(8):646-53
  • Curti A, Pandolfi S, Valzasina B, Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 2007;109(7):2871-7
  • Cohen AD, Schaer DA, Liu C, Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 2010;5(5):e10436
  • Raychaudhuri B, Rayman P, Ireland J, Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 2011;13(6):591-9
  • Wing K, Yamaguchi T, Sakaguchi S. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol 2011;32(9):428-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.