548
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Novel effective drugs for diabetic kidney disease? or not?

, MD PhD, , &

Bibliography

  • International Diabetes Federation. IDF Diabetes Atlas. 6th edition. 2013. Available from: http://www.idf.org/diabetesatlas [Accessed on May 2014]
  • Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 2013;369:1892-903
  • Lam DW, LeRoith D. The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes 2012;19:93-6
  • Kidney Disease Improving Global Outcomes (KDIGO) Study Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Available from: http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf [Accessed on 21 May 2014]
  • Parving HH, Hovind P, Rossing K, Andersen S. Evolving strategies for renoprotection: diabetic nephropathy. Curr Opin Nephrol Hypertens 2001;10:515-22
  • Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 2002;346:1145-51
  • Burrows NR, Li Y, Geiss LS. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care 2010;33:73-7
  • Jones CA, Krolewski AS, Rogus J, et al. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int 2005;67:1684-91
  • Fong DS, Aiello L, Gardner TW, et al. Retinopathy in Diabetes. Diabetes Care 2004;27:s84-7
  • Karalliedde J, Viberti G. Microalbuminuria and cardiovascular risk. Am J Hypertens 2004;17:986-93
  • Berl T, Henrich W. Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol 2006;1:8-18
  • Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 1997;157:1413-18
  • Spanakis E, Golden S. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep 2013;13:814-23
  • Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 2011;80:1258-70
  • Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 2013;24:302-8
  • The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF KDOQI) Study Group. KDOQI clinical practice guideline for diabetes and CKD: 2012 Update. Am J Kidney Dis 2012;60:850-86
  • Himmelfarb J, Tuttle KR. New therapies for diabetic kidney disease. N Engl J Med 2013;369:2549-50
  • Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J (Clin Res Ed) 1982;285:685-8
  • Taguma Y, Kitamoto Y, Futaki G, et al. Effect of captopril on heavy proteinuria in azotemic diabetics. N Engl J Med 1985;313:1617-20
  • Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol 2012;23:1917-28
  • Cheng J, Zhang W, Zhang X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med 2014;174:773-85
  • Hajhosseiny R, Khavandi K, Jivraj N, et al. Have we reached the limits for the treatment of diabetic nephropathy? Expert Opin Investig Drugs 2014;23:511-22
  • Gaspari F, Perico N, Ruggenenti P, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 1995;6:257-63
  • DCCT Study Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977-86
  • EDIC Study Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 2003;290:2159-67
  • The DCCT/EDIC Research Group. Intensive therapy and GFR in type 1 diabetes. New Engl J Med 2012;366:856-8
  • Fullerton B, Jeitler K, Seitz M, et al. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev 2014;2:CD009122
  • UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837-53
  • Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72
  • Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010;376:419-30
  • Dluhy RG, McMahon GT. Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 2008;358:2630-3
  • Lachin JM. Point: intensive glycemic control and mortality in ACCORD--a chance finding? Diabetes Care 2010;33:2719-21
  • Riddle MC. Counterpoint: intensive glucose control and mortality in ACCORD--still looking for clues. Diabetes Care 2010;33:2722-4
  • Coca SG, Ismail-Beigi F, Haq N, et al. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 2012;172:761-9
  • National Institute for Health and Clinical Excellence. Type 2 diabetes. The management of type 2 diabetes. Available from: http://www.nice.org.uk/nicemedia/pdf/CG66NICEGuideline.pdf [Accessed on 30 May 2014]
  • American Diabetes Association. Executive summary: standards of medical care in diabetes—2012. Diabetes Care 2012;35:S4-S10
  • American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014;37:S14-80
  • Reboldi G, Gentile G, Angeli F, et al. glucose lowering, hypoglycemia, and cardiovascular disease risk. Curr Cardiovasc Risk Rep 2010;4:159-64
  • Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 2010;6:319-30
  • Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy. Nat Rev Nephrol 2014;10:77-87
  • Kelsen S, Patel BJ, Parker LB, et al. Heme oxygenase attenuates angiotensin II-mediated superoxide production in cultured mouse thick ascending loop of Henle cells. Am J Physiol Renal Physiol 2008;295:F1158-65
  • Pradhan A, Umezu M, Fukagawa M. Heme-oxygenase upregulation ameliorates angiotensin II-induced tubulointerstitial injury and salt-sensitive hypertension. Am J Nephrol 2006;26:552-61
  • Nakatani S, Ishimura E, Naganuma T, et al. Poor glycemic control and decreased renal function are associated with increased intrarenal RAS activity in Type 2 diabetes mellitus. Diabetes Res Clin Pract 2014;105(1):40-6
  • Zatz R, Dunn BR, Meyer TW, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925
  • Perico N, Amuchastegui SC, Colosio V, et al. Evidence that an angiotensin-converting enzyme inhibitor has a different effect on glomerular injury according to the different phase of the disease at which the treatment is started. J Am Soc Nephrol 1994;5:1139-46
  • The ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A Meta-Analysis of Individual Patient Data. Ann Intern Med 2001;134:370-9
  • Weinberg MS, Weinberg AJ, Cord R, Zappe DH. The effect of high-dose angiotensin II receptor blockade beyond maximal recommended doses in reducing urinary protein excretion. J Renin Angiotensin Aldosterone Syst 2001;2:S196-S98
  • Weinberg MS, Kaperonis N, Bakris GL. How high should an ACE inhibitor or angiotensin receptor blocker be dosed in patients with diabetic nephropathy? Curr Hypertens Rep 2003;5:418-25
  • Ruggenenti P, Cravedi P, Remuzzi G. Proteinuria: increased angiotensin-receptor blocking is not the first option. Nat Rev Nephrol 2009;5:367-8
  • Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006;116:288-96
  • Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol 2012;8:301-6
  • Ruggenenti P, Mosconi L, Sangalli F, et al. Glomerular size-selective dysfunction in NIDDM is not ameliorated by ACE inhibition or by calcium channel blockade. Kidney Int 1999;55:984-94
  • Bjorck S, Mulec H, Johnsen SA, et al. Renal protective effect of enalapril in diabetic nephropathy. BMJ 1992;304:339-43
  • Parving HH, Hommel E, Smidt UM. Protection of kidney function and decrease in albuminuria by captopril in insulin dependent diabetics with nephropathy. BMJ 1988;297:1086-91
  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329:1456-62
  • Passa P, LeBlanc H, Marre M. Effects of enalapril in insulin-dependent diabetic subjects with mild to moderate uncomplicated hypertension. Diabetes Care 1987;10:200-4
  • Pedersen MM, Schmitz A, Pedersen EB, et al. Acute and long-term renal effects of angiotensin converting enzyme inhibition in normotensive, normoalbuminuric insulin-dependent diabetic patients. Diabet Med 1988;5:562-9
  • Wiegmann TB, Herron KG, Chonko AM, et al. Effect of angiotensin-converting enzyme inhibition on renal function and albuminuria in normotensive type I diabetic patients. Diabetes 1992;41:62-7
  • EUCLID Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet 1997;349:1787-92
  • Chaturvedi N, Porta M, Klein R, et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 2008;372:1394-402
  • Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 2009;361:40-51
  • Bilous R, Chaturvedi N, Sjolie AK, et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med 2009;151:11-14
  • Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004;351:1941-51
  • Ruggenenti P, Fassi A, Ilieva A, et al. Effects of verapamil added-on trandolapril therapy in hypertensive type 2 diabetes patients with microalbuminuria: the BENEDICT-B randomized trial. J Hypertens 2011;29:207-16
  • Ruggenenti P, Porrini E, Motterlini N, et al. Measurable urinary albumin predicts cardiovascular risk among normoalbuminuric patients with type 2 diabetes. J Am Soc Nephrol 2012;23:1717-24
  • Menne J, Ritz E, Ruilope LM, et al. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J Am Heart Assoc 2014;3:e000810
  • Catalá-López F, Martín-Serrano G, Maciá MA, Montero D. Olmesartan for the prevention or delay of diabetic nephropathy, some considerations. Rev Esp Cardiol (Engl Ed) 2012;65:678-9
  • Food and Drug Administration. FDA drug safety communication: safety review Update of Benicar (olmesartan) and cardiovascular events. Available from: http://www.fda.gov/Drugs/DrugSafety/ucm251268.htm [Accessed on 21 May 2014]
  • Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870-8
  • Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000;355:253-9
  • Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851-60
  • Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861-9
  • Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 2008;148:30-48
  • Mogensen CE, Neldam S, Tikkanen I, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ 2000;321:1440-4
  • Kohn O. Review: combination therapy with renin angiotensin inhibitors reduces proteinuria more than single drugs alone in renal disease. Evid Based Med 2008;13:73
  • Cetinkaya R, Odabas AR, Selcuk Y. Anti-proteinuric effects of combination therapy with enalapril and losartan in patients with nephropathy due to type 2 diabetes. Int J Clin Pract 2004;58:432-5
  • Titan SM, M Vieira J Jr, Dominguez WV, et al. ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: a double-blind randomized clinical trial. Clin Nephrol 2011;76:273-83
  • Fernandez Juarez G, Luno J, Barrio V, et al. Effect of dual blockade of the renin-angiotensin system on the progression of type 2 diabetic nephropathy: a randomized trial. Am J Kidney Dis 2013;61:211-18
  • Preventing ESRD in Overt Nephropathy of Type 2 Diabetes (VALID). NCT00494715. Available from: http://clinicaltrials.gov/show/NCT00494715 [Accessed on 21 June 2014]
  • Preventing Microalbuminuria in Type 2 Diabetes (VARIETY). NCT00503152. Available from: http://clinicaltrials.gov/show/NCT00503152 [Accessed on 21 June 2014]
  • Verdecchia P, Angeli F, Mazzotta G, et al. Aliskiren versus ramipril in hypertension. Ther Adv Cardiovasc Dis 2010;4:193-200
  • Parving HH, Persson F, Lewis JB, et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008;358:2433-46
  • Parving H-H, Brenner BM, McMurray JJV, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012;367:2204-13
  • De Boer RA, Azizi M, Danser AJ, et al. Dual RAAS suppression: recent developments and implications in light of the ALTITUDE study. J Renin Angiotensin Aldosterone Syst 2012;13:409-12
  • Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996;334:13-18
  • Tozawa M, Iseki K, Iseki C, et al. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003;41:1341-5
  • Lewis JB, Berl T, Bain RP, et al. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group. Am J Kidney Dis 1999;34:809-17
  • UKPDS SG. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998;317:703-13
  • Bakris GL, Weir MR, Shanifar S, et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med 2003;163:1555-65
  • Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int 2002;61:1086-97
  • Estacio RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 2000;23(Suppl 2):B54-64
  • British Renal Association. Detection, Monitoring and Care of Patients with CKD. Available from: http://www.renal.org/guidelines/modules/detection-monitoring-and-care-of-patients-with-ckd#sthashsV9trfmRdpbs [Accessed on 21 May 2014]
  • Angeli F, Gentile G, Reboldi G, Verdecchia P. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and protection from stroke. Expert Rev Cardiovasc Ther 2008;6:1171-4
  • Reboldi G, Gentile G, Angeli F, Verdecchia P. Optimal therapy in hypertensive subjects with diabetes mellitus. Curr Atheroscler Rep 2011;13:176-85
  • Reboldi G, Gentile G, Manfreda VM, et al. Tight blood pressure control in diabetes: evidence-based review of treatment targets in patients with diabetes. Curr Cardiol Rep 2012;14:89-96
  • Reboldi G, Gentile G, Angeli F, et al. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens 2011;29:1253-69
  • Jenkins AJ, Lyons TJ, Zheng D, et al. Serum lipoproteins in the diabetes control and complications trial/epidemiology of diabetes intervention and complications cohort: associations with gender and glycemia. Diabetes Care 2003;26:810-18
  • Tolonen N, Forsblom C, Thorn L, et al. Lipid abnormalities predict progression of renal disease in patients with type 1 diabetes. Diabetologia 2009;52:2522-30
  • Tonolo G, Velussi M, Brocco E, et al. Simvastatin maintains steady patterns of GFR and improves AER and expression of slit diaphragm proteins in type II diabetes. Kidney Int 2006;70:177-86
  • Ludwig S, Shen GX. Statins for diabetic cardiovascular complications. Curr Vasc Pharmacol 2006;4:245-51
  • Colhoun HM, Betteridge DJ, Durrington PN, et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis 2009;54:810-19
  • Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011;377:2181-92
  • Olyaei A, Greer E, Delos Santos R, Rueda J. The Efficacy and Safety of the 3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors in Chronic Kidney Disease, Dialysis, and Transplant Patients. Clin J Am Soc Nephrol 2011;6:664-78
  • Ruggenenti P, Perna A, Tonelli M, et al. Effects of add-on fluvastatin therapy in patients with chronic proteinuric nephropathy on dual renin-angiotensin system blockade: the ESPLANADE trial. Clin J Am Soc Nephrol 2010;5:1928-38
  • Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2011;54:280-90
  • Ginsberg HN. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) Lipid Trial: what we learn from subgroup analyses. Diabetes Care 2011;34:S107-S08
  • Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563-74
  • Ali N, Ali S, Ahmed M, Javed A. Analysis of drug used for the treatment of complications of diabetes in a teaching hospital. Der Pharmacia Lettre. Available from: http://scholarsresearchlibrary.com/DPL-vol3-iss4/DPL-2011-3-4-163-177.pdf [Accessed on 11 June 2014]
  • Su K, Zhu F, Guo L, et al. Retrospective study on PROFESSOR Zhongying Zhou’s experience in Traditional Chinese Medicine treatment on diabetic nephropathy. J Tradit Chin Med 2013;33:262-7
  • Freedman BI, Bostrom M, Daeihagh P, Bowden DW. Genetic factors in diabetic nephropathy. Clin J Am Soc Nephrol 2007;2:1306-16
  • Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 2012;8:e1002921
  • Harjutsalo V, Katoh S, Sarti C, et al. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes 2004;53:2449-54
  • Brosius FC, Heilig CW. Glucose transporters in diabetic nephropathy. Pediatr Nephrol 2005;20:447-51
  • Heilig CW, Concepcion LA, Riser BL, et al. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1995;96:1802-14
  • Fukami K, Yamagishi S, Ueda S, Okuda S. Role of AGEs in diabetic nephropathy. Curr Pharm Des 2008;14:946-52
  • Yamagishi S, Fukami K, Ueda S, Okuda S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets 2007;8:952-9
  • Benigni A, Colosio V, Brena C, et al. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 1998;47:450-6
  • Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci 2008;13:1227-39
  • Shahzad K, Bock F, Dong W, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. 2014 doi: 10.1038/ki.2014.271. [Epub ahead of print]
  • Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-15
  • Remuzzi G, Perico N, Benigni A. New therapeutics that antagonize endothelin: promises and frustrations. Nat Rev Drug Discov 2002;1:986-1001
  • Gagliardini E, Corna D, Zoja C, et al. Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. Am J Physiol Renal Physiol 2009;297:F1448-F56
  • Zoja C, Cattaneo S, Fiordaliso F, et al. Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes. Am J Physiol Renal Physiol 2011;301:F1114-23
  • Zoja C, Morigi M, Figliuzzi M, et al. Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am J Kidney Dis 1995;26:934-41
  • Morigi M, Buelli S, Angioletti S, et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am J Pathol 2005;166:1309-20
  • Buelli S, Rosano L, Gagliardini E, et al. Pezzotta A, et al. beta-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J Am Soc Nephrol 2014;25:523-33
  • Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol 2011;22:763-72
  • Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 2010;21:527-35
  • Wenzel RR, Littke T, Kuranoff S, et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol 2009;20:655-64
  • Neuhofer W, Pittrow D. Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur J Clin Invest 2009;39(Suppl 2):50-67
  • Study of Diabetic Nephropathy With Atrasentan (SONAR). NCT01858532. Available from: http://clinicaltrials.gov/ct2/show/NCT01858532 [Accessed on 21 May 2014]
  • Daull P, Jeng AY, Battistini B. Towards triple vasopeptidase inhibitors for the treatment of cardiovascular diseases. J Cardiovasc Pharmacol 2007;50:247-56
  • Parvanova A, Remuzzi G, Benigni A, Ruggenenti P. Ameliorating day- and night-time blood pressure control by combined ECE/NEP inhibition with daglutril on top of losartan. Poster, Annual Congress of the American Society of Nephrology; Philadelphia, USA: 2011
  • Parvanova A, van der Meer IM, Iliev I, et al. Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013;1:19-27
  • Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 2013;304:F156-67
  • De Nicola L, Gabbai FB, Liberti ME, et al. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis 2014;64:16-24
  • Washburn WN, Poucher SM. Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 2013;22:463-86
  • Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE). NCT02065791. Available from: http://clinicaltrials.gov/ct2/show/NCT01200394 [Accessed on 21 May 2014]
  • Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014;85:962-71
  • Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem 2000;275:21177-84
  • Shanmugam N, Figarola JL, Li Y, et al. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 2008;57:879-88
  • Zheng F, Zeng YJ, Plati AR, et al. Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db/db mice. Kidney Int 2006;70:507-14
  • Williams ME, Bolton WK, Khalifah RG, et al. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605-14
  • Lewis EJ, Greene T, Spitalewiz S, et al. Pyridorin in type 2 diabetic nephropathy. J Am Soc Nephrol 2012;23:131-6
  • Chen JL, Francis J. Pyridoxamine, advanced glycation inhibition, and diabetic nephropathy. J Am Soc Nephrol 2012;23:6-8
  • Bell J, Mancuso J, Kupiec J, et al. Results of a randomized trial to evaluate a novel RAGE inhibitor in patients with diabetic nephropathy [abstract 0957-P]. American Diabetes Association Scientific Sessions 2011 (ADA), 24 – 28 June 2011, San Diego, California, USA
  • Schalkwijk CG, Miyata T. Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 2012;42:1193-204
  • Kennedy L, Solano MP, Meneghini L, et al. Anti-glycation and anti-albuminuric effects of GLY-230 in human diabetes. Am J Nephrol 2010;31:110-16
  • Rodman & Renshaw Global Healthcare Conference. Available from: http://www.businesswire.com/news/home/20070511005117/en/Rodman-Renshaw-Global-Healthcare-Conference-2007-Presenter#U5A7s_l_vEM [Accessed on 5 June 2014]
  • Gray SP, Jha JC, Di Marco E, Jandeleit-Dahm KA. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications. Exp Rev Endocrinol Metab 2014;9:111-22
  • Lee DY, Wauquier F, Eid AA, et al. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 2013;288:28668-86
  • Babelova A, Avaniadi D, Jung O, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med 2012;53:842-53
  • Gorin Y, Block K, Hernandez J, et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 2005;280:39616-26
  • Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 2009;106:14385-90
  • Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2010;299:F1348-58
  • Yogi A, Mercure C, Touyz J, et al. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 2008;51:500-6
  • Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 2014;25(6):1237-54
  • Safety and Efficacy of Oral GKT137831 in Patient With Type 2 Diabetes and Albuminuria. NCT02010242. Available from: http://clinicaltrials.gov/ct2/show/NCT02010242 [Accessed on 21 May 2014]
  • Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Renal Physiol 2006;290:F762-8
  • Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 1998;275:C1640-52
  • Ushio-Fukai M, Alexander RW, Akers M, et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999;274:22699-704
  • Berthier CC, Zhang H, Schin M, et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 2009;58:469-77
  • A Study to Test Safety and Efficacy of Baricitinib in Participants With Diabetic Kidney Disease. NCT01683409. Available from: http://clinicaltrials.gov/ct2/show/NCT01683409 [Accessed on June 05 2014]
  • Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 1999;45:7-17
  • Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 2009;61:595-603
  • Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NFkappaB pathway. Cell Cycle 2012;11:159-69
  • Ruggenenti P. Effects of MCP-1 inhibition by bindarit therapy in type 2 diabetes subjects with micro- or macroalbuminuria. J Am Soc Nephrol 2010;21:F-FC194
  • De Sanctis MT, Cesarone MR, Belcaro G, et al. Treatment of intermittent claudication with pentoxifylline: a 12-month, randomized trial--walking distance and microcirculation. Angiology 2002;53(Suppl 1):S7-12
  • Berman B, Duncan MR. Pentoxifylline inhibits normal human dermal fibroblast in vitro proliferation, collagen, glycosaminoglycan, and fibronectin production, and increases collagenase activity. J Invest Dermatol 1989;92:605-10
  • Lin SL, Chen YM, Chien CT, et al. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol 2002;13:2916-29
  • Tsai TJ, Lin RH, Chang CC, et al. Vasodilator agents modulate rat glomerular mesangial cell growth and collagen synthesis. Nephron 1995;70:91-9
  • Horvath B, Marton Z, Halmosi R, et al. In vitro antioxidant properties of pentoxifylline, piracetam, and vinpocetine. Clin Neuropharmacol 2002;25:37-42
  • Navarro JF, Mora C. Antiproteinuric effect of pentoxifylline in patients with diabetic nephropathy. Diabetes Care 1999;22:1006-8
  • Lin S-L, Chen R-H, Chen Y-M, et al. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol 2005;16:2702-13
  • Solerte SB, Fioravanti M, Patti AL, et al. Pentoxifylline, total urinary protein excretion rate and arterial blood pressure in long-term insulin-dependent diabetic patients with overt nephropathy. Acta Diabetol Lat 1987;24:229-39
  • Navarro JF, Mora C, Rivero A, et al. Urinary protein excretion and serum tumor necrosis factor in diabetic patients with advanced renal failure: effects of pentoxifylline administration. Am J Kidney Dis 1999;33:458-63
  • Harmankaya O, Seber S, Yilmaz M. Combination of pentoxifylline with angiotensin converting enzyme inhibitors produces an additional reduction in microalbuminuria in hypertensive type 2 diabetic patients. Ren Fail 2003;25:465-70
  • Rodriguez-Moran M, Guerrero-Romero F. Pentoxifylline is as effective as captopril in the reduction of microalbuminuria in non-hypertensive type 2 diabetic patients--a randomized, equivalent trial. Clin Nephrol 2005;64:91-7
  • Roozbeh J, Banihashemi MA, Ghezlou M, et al. Captopril and combination therapy of captopril and pentoxifylline in reducing proteinuria in diabetic nephropathy. Ren Fail 2010;32:172-8
  • Ghorbani A, Omidvar B, Beladi-Mousavi S, et al. The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia 2012;32:790-6
  • Shan D, Wu HM, Yuan QY, et al. Pentoxifylline for diabetic kidney disease. Cochrane Database Syst Rev 2012;2:CD006800
  • Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care 2012;35:2061-8
  • Navarro-Gonzalez JF, Muros M, Mora-Fernandez C, et al. Pentoxifylline for renoprotection in diabetic nephropathy: the PREDIAN study. Rationale and basal results. J Diabetes Complications 2011;25:314-19
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Effect of Pentoxifylline on Renal Function and Urinary Albumin Excretion in Patients with Diabetic Kidney Disease: the PREDIAN Trial. J Am Soc Nephrol 2014. [Epub ahead of print]
  • A Phase 2 Study to Evaluate the Safety and Efficacy of CTP-499 in Type 2 Diabetic Nephropathy Patients. NCT01487109. Available from: http://clinicaltrials.gov/ct2/show/NCT01487109 [Accessed on 21 May 2014]
  • A Phase 2, Placebo-Controlled Study To Evaluate The Efficacy And Safety Of PF-00489791 In Patients With Type 2 Diabetes And Overt Nephropathy. NCT01200394. Available from: http://clinicaltrials.gov/ct2/show/NCT01200394 [Accessed on 21 May 2014]
  • Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677-86
  • Sayyed SG, Ryu M, Kulkarni OP, et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int 2011;80:68-78
  • A Study to Evaluate the Safety and Efficacy of CCX140-B in Subjects With Diabetic Nephropathy. NCT01447147. Available from: http://clinicaltrials.gov/ct2/show/NCT01447147 [Accessed on 21 May 2014]
  • A Study to Evaluate the Effect of CCX140-B on Urinary Albumin Excretion in Subjects With Type 2 Diabetes and Albuminuria. NCT01440257. Available from: http://clinicaltrials.gov/show/NCT01440257 [Accessed on 21 May 2014]
  • Tang WW, Qi M, Warren JS. Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN. Kidney Int 1996;50:665-71
  • A Phase 2 Multi-Center Study To Evaluate The Efficacy And Safety Of A Chemokine CCR2/5 Receptor Antagonist In Adults With Type 2 Diabetes And Overt Nephropathy. NCT01712061. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01712061 [Accessed on 21 May 2014]
  • Baggiolini M. Chemokines and leukocyte traffic. Nature 1998;392:565-8
  • Chow FY, Nikolic-Paterson DJ, Ozols E, et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006;69:73-80
  • Chow FY, Nikolic-Paterson DJ, Ma FY, et al. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007;50:471-80
  • Ninichuk V, Clauss S, Kulkarni O, et al. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 2008;172:628-37
  • Sayyed SG, Gaikwad AB, Lichtnekert J, et al. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant 2010;25:1811-17
  • Hoffmann S, Hoos J, Klussmann S, Vonhoff S. RNA aptamers and spiegelmers: synthesis, purification, and post-synthetic PEG conjugation. Curr Protoc Nucleic Acid Chem 2011;Chapter 4:Unit 4 46 1-30
  • NOX-E36 in Patients With Type 2 Diabetes Mellitus and Albuminuria. NCT01547897. Available from: http://clinicaltrials.gov/ct2/show/NCT01547897 [Accessed on 21 May 2014]
  • Haluzik M, Frolik J, Rychlik I. Renal Effects of DPP-4 Inhibitors: a Focus on Microalbuminuria. Int J Endocrinol 2013;2013:1-7
  • MARLINA - T2DM : Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects With Renal Disease With LINAgliptin. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01792518 [Accessed on 14 June 2014]
  • Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 2013;36:3460-8
  • Filippatos TD, Elisaf MS. Effects of glucagon-like peptide-1 receptor agonists on renal function. World J Diabetes 2013;4:190-201
  • Skov J. Effects of GLP-1 in the Kidney. Rev Endocr Metab Disord 2014;15:197-207
  • Food and Drug Administration. Information for Healthcare Professionals: reports of Altered Kidney Function in patients using Exenatide (Marketed as Byetta). Available from: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm188656.htm [Accessed on 21 May 2014]
  • Young MA, Wald JA, Matthews JE, et al. Effect of renal impairment on the pharmacokinetics, efficacy, and safety of albiglutide. Postgrad Med 2014;126:35-46
  • Mehdi UF, Adams-Huet B, Raskin P, et al. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol 2009;20:2641-50
  • Epstein M, Buckalew V, Martinez F, et al. OR-54: antiproteinuric efficacy of eplerenone, enalapril, and eplerenone/enalapril combination therapy in diabetic hypertensives with microalbuminuria. Am J Hypertens 2002;15:24A
  • Kolkhof P, Delbeck M, Kretschmer A, et al. Finerenone, a novel selective non-steroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 2014;64:69-78
  • Jain G, Campbell RC, Warnock DG. Mineralocorticoid receptor blockers and chronic kidney disease. Clin J Am Soc Nephrol 2009;4:1685-91
  • Roscioni SS, de Zeeuw D, Bakker SJ, Lambers Heerspink HJ. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy. Nat Rev Nephrol 2012;8:691-9
  • Safety and Efficacy of Different Oral Doses of BAY94-8862 in Japanese Subjects With Type 2 Diabetes Mellitus and the Clinical Diagnosis of Diabetic Nephropathy (ARTS-DN Japan). Available from: http://clinicaltrials.gov/ct2/show/record/NCT01968668 [Accessed on 22 May 2014]
  • Beidler CB, Petrovan RJ, Conner EM, et al. Generation and activity of a humanized monoclonal antibody that selectively neutralizes the epidermal growth factor receptor ligands transforming growth factor-alpha and epiregulin. J Pharmacol Exp Ther 2014;349:330-43
  • Laouari D, Burtin M, Phelep A, et al. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol 2011;22:327-35
  • Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005;11:867-74
  • Study of LY3016859 in Participants With Diabetic Nephropathy. NCT01774981. Available from: http://clinicaltrials.gov/show/NCT01774981 [Accessed on 21 May 2014]
  • Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 2010;5:1420-8
  • Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol 2011;22:1144-51
  • Soma J, Sato K, Saito H, Tsuchiya Y. Effect of tranilast in early-stage diabetic nephropathy. Nephrol Dial Transplant 2006;21:2795-9
  • Holmes DR Jr, Savage M, LaBlanche JM, et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation 2002;106:1243-50
  • Zammit SC, Cox AJ, Gow RM, et al. Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates. Bioorg Med Chem Lett 2009;19:7003-6
  • Kikuchi Y, Yamada M, Imakiire T, et al. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats. J Endocrinol 2007;192:595-603
  • Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol 2007;568:242-7
  • Kolavennu V, Zeng L, Peng H, et al. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 2008;57:714-23
  • Komers R, Oyama TT, Beard DR, et al. Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 2011;79:432-42
  • Matoba K, Kawanami D, Okada R, et al. Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1alpha. Kidney Int 2013;84:545-54
  • Komers R. Rho kinase inhibition in diabetic kidney disease. Br J Clin Pharmacol 2013;76:551-9
  • Babelova A, Jansen F, Sander K, et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS One 2013;8:e80328
  • Löhn M, Plettenburg O, Ivashchenko Y, et al. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 2009;54:676-83
  • Doggrell SA. Sarpogrelate: cardiovascular and renal clinical potential. Exp Opin Investig Drugs 2004;13:865-74
  • Ishimura E, Nishizawa Y, Emoto M, et al. Therapeutic effect of sarpogrelate, a new 5-hydroxytryptamine receptor 2A antagonist, on diabetic nephropathy and neuropathy. Nephron 1997;76:227-9
  • Takahashi T, Yano M, Minami J, et al. Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract 2002;58:123-9
  • Agarwal R. Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade. Am J Physiol Renal Physiol 2003;284:F863-9
  • Schneider A, Panzer U, Zahner G, et al. Monocyte chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-beta. Kidney Int 1999;56:135-44
  • Effect of Sarpogrelate On the Nephropathy in Type 2 Diabetes (SONATA Study). NCT01869881. Available from: http://clinicaltrials.gov/ct2/show/NCT01869881 [Accessed on 21 May 2014]
  • Osafune K. iPS cell technology-based research for the treatment of diabetic nephropathy. Semin Nephrol 2012;32:479-85
  • Ezquer ME, Ezquer FE, Arango-Rodriguez ML, Conget PA. MSC transplantation: a promising therapeutic strategy to manage the onset and progression of diabetic nephropathy. Biol Res 2012;45:289-96
  • Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001;226:507-20
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98:1076-84
  • Semedo P, Palasio CG, Oliveira CD, et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int Immunopharmacol 2009;9:677-82
  • Higashiyama R, Inagaki Y, Hong YY, et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 2007;45:213-22
  • Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004;15:1794-804
  • Qian H, Yang H, Xu W, et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int J Mol Med 2008;22:325-32
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008;8:726-36
  • Safety and Efficacy of Mesenchymal Precursor Cells in Diabetic Nephropathy. NCT01843387. Available from: http://clinicaltrials.gov/ct2/show/NCT01843387 [Accessed on 21 May 2014]
  • Zoccali C, Ruggenenti P, Perna A, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol 2011;22:1923-30
  • Sanchez-Nino MD, Bozic M, Cordoba-Lanus E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 2012;302:F647-57
  • Cozzolino M, Gentile G, Mazzaferro S, et al. Blood pressure, proteinuria, and phosphate as risk factors for progressive kidney disease: a hypothesis. Am J Kidney Dis 2013;62:984-92
  • Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int 2012;82:1261-70
  • de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 2010;376:1543-51
  • Babaei-Jadidi R, Karachalias N, Kupich C, et al. High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 2004;47:2235-46
  • Babaei-Jadidi R, Karachalias N, Ahmed N, et al. Prevention of Incipient Diabetic Nephropathy by High-Dose Thiamine and Benfotiamine. Diabetes 2003;52:2110-20
  • Rabbani N, Thornalley PJ. Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diabetes Obes Metab 2011;13:577-83
  • Alkhalaf A, Klooster A, van Oeveren W, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care 2010;33:1598-601
  • Schulman G, Agarwal R, Acharya M, et al. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis 2006;47:565-77
  • Hayashino Y, Fukuhara S, Akizawa T, et al. Cost-effectiveness of administering oral adsorbent AST-120 to patients with diabetes and advance-stage chronic kidney disease. Diabetes Res Clin Pract 2010;90:154-9
  • Sanaka T, Akizawa T, Koide K, Koshikawa S. Protective effect of an oral adsorbent on renal function in chronic renal failure: determinants of its efficacy in diabetic nephropathy. Ther Apher Dial 2004;8:232-40
  • Konishi K, Nakano S, Tsuda S-I, et al. AST-120 (Kremezin®) initiated in early stage chronic kidney disease stunts the progression of renal dysfunction in type 2 diabetic subjects. Diabetes Res Clin Pract 2008;81:310-15
  • Akizawa T, Asano Y, Morita S, et al. Effect of a carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial. Am J Kidney Dis 2009;54:459-67
  • Kania DS, Smith CT, Nash CL, et al. Potential new treatments for diabetic kidney disease. Med Clin North Am 2013;97:115-34
  • NCT00860431 KSARDPiKK-S. Kremezin Study Against Renal Disease Progression in Korea (K-STAR). Available from: http://clinicaltrials.gov/show/NCT00860431 [Accessed on 21 May 2014]
  • Study of XL784 in Patients With Albuminuria Due to Diabetic Nephropathy. NCT00312780. Available from: http://clinicaltrials.gov/ct2/show/record/NCT00312780 [Accessed on 21 May 2014]
  • Efficacy and Safety Study of Probucol in Patients With Diabetic Nephropathy. NCT01726816. Available from: http://clinicaltrials.gov/ct2/show/NCT01726816 [Accessed on 21 May 2014]
  • Gambaro G, Kinalska I, Oksa A, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002;13:1615-25
  • Dedov I, Shestakova M, Vorontzov A, Palazzini E. A randomized, controlled study of sulodexide therapy for the treatment of diabetic nephropathy. Nephrol Dial Transplant 1997;12:2295-300
  • Solini A, Vergnani L, Ricci F, Crepaldi G. Glycosaminoglycans delay the progression of nephropathy in NIDDM. Diabetes Care 1997;20:819-23
  • Lewis EJ, Lewis JB, Greene T, et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am J Kidney Dis 2011;58:729-36
  • House AA, Weir MA. Sulodexide for diabetic nephropathy: another one bites the dust. Am J Kidney Dis 2011;58:692-4
  • Packham DK, Wolfe R, Reutens AT, et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol 2012;23:123-30
  • Kelly DJ, Zhang Y, Hepper C, et al. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 2003;52:512-18
  • Tuttle KR, Bakris GL, Toto RD, et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 2005;28:2686-90
  • Menne J, Shushakova N, Bartels J, et al. Dual inhibition of classical protein kinase C-alpha and protein kinase C-beta isoforms protects against experimental murine diabetic nephropathy. Diabetes 2013;62:1167-74
  • Kovesdy CP. Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Nephrol Dial Transplant 2012;27:3056-62
  • Thomas M. A preliminary evaluation of bardoxolone methyl for the treatment of diabetic nephropathy. Expert Opin Drug Metab Toxicol 2012;8:1015-22
  • Li W, Khor TO, Xu C, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 2008;76:1485-9
  • Tsao T, Kornblau S, Safe S, et al. Role of peroxisome proliferator-activated receptor-gamma and its coactivator DRIP205 in cellular responses to CDDO (RTA-401) in acute myelogenous leukemia. Cancer Res 2010;70:4949-60
  • Pergola PE, Krauth M, Huff JW, et al. Effect of bardoxolone methyl on kidney function in patients with T2D and Stage 3b-4 CKD. Am J Nephrol 2011;33:469-76
  • Upadhyay A, Sarnak MJ, Levey AS. Bardoxolone methyl, chronic kidney disease, and type 2 diabetes. N Engl J Med 2011;365:1746; author reply 46-7
  • Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular Hyperfiltration and Renal Disease Progression in Type 2 Diabetes. Diabetes Care 2012;35:2061-8
  • Zoja C, Corna D, Nava V, et al. Analogues of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Renal Physiol 2013;304(6):F808-19
  • Harris RC. The best laid plans. Am J Physiol Renal Physiol 2013;304(8):F1086-7
  • de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013;369:2492-503
  • Collins AJ, Vassalotti JA, Wang C, et al. Who should be targeted for CKD screening? Impact of diabetes, hypertension, and cardiovascular disease. Am J Kidney Dis 2009;53:S71-7
  • Susan van D, Beulens JWJ, Yvonne T, et al. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 2010;17:s3-8
  • Roscioni SS, de Zeeuw D, Hellemons ME, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 2013;56(2):259-67
  • Moresco RN, Sangoi MB, De Carvalho JA, et al. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta 2013;421:17-30
  • Siwy J, Schanstra JP, Argiles A, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant 2014;29(8):1563-70
  • Fontsere N, Salinas I, Bonal J, et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol Dial Transplant 2006;21:2152-8
  • National Kidney Foundation. GFR Decline as an Endpoint in Clinical Trials for CKD. Available from: http://www.kidney.org/professionals/research/research_info [Accessed on 12 September 2014]
  • Lambers Heerspink HJ, Weldegiorgis M, Inker LA, et al. Estimated GFR decline as a surrogate end point for kidney failure: a post hoc analysis from the Reduction of End Points in Non-Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan (RENAAL) study and Irbesartan Diabetic Nephropathy Trial (IDNT). Am J Kidney Dis 2014;63:244-50
  • Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int Suppl 1997;63:S151-4
  • REIN Study Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 1997;349:1857-63
  • Safford MM. Comparative effectiveness research and outcomes of diabetes treatment. JAMA 2014;311:2275-6
  • Roumie CL, Greevy RA, Grijalva CG, et al. Association between intensification of metformin treatment with insulin vs sulfonylureas and cardiovascular events and all-cause mortality among patients with diabetes. JAMA 2014;311:2288-96
  • de Borst MH, Vervloet MG, ter Wee PM, Navis G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol 2011;22:1603-9
  • Zoja C, Zanchi C, Locatelli M, et al. FGF23 and Klotho Expression in the Kidney of Zucker Diabetic Fatty (ZDF) Rats and Modulation by ACE Inhibitor. American Society of Nephrology (ASN) Kidney Week. 2012. Available from: https://www.asn-online.org/api/download/?file=/education/kidneyweek/archives/KW12Abstracts.pdf [Accessed on 20 October 2012]
  • Zoccali C, Ruggenenti P, Perna A, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol 2011;22:1923-30
  • Kaufman FR. Type 2 diabetes mellitus in children and youth: a new epidemic. J Pediatr Endocrinol Metab 2002;15(Suppl 2):737-44
  • Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-59
  • Reboldi G, Gentile G, Angeli F, Verdecchia P. Blood pressure lowering in the oldest old. J Hypertens 2010;28:1373-6
  • Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 2009;338:b1665
  • Onuigbo MA. Is renoprotection with RAAS blockade a failed paradigm? Have we learnt any lessons so far? Int J Clin Pract 2010;64:1341-6
  • Burrows NR, Li Y, Geiss LS. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care 2010;33:73-7
  • Ruggenenti P, Remuzzi G. Nephropathy of type 1 and type 2 diabetes: diverse pathophysiology, same treatment? Nephrol Dial Transplant 2000;15:1900-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.