17
Views
19
CrossRef citations to date
0
Altmetric
Review

Modulators of dyslipidaemia

&
Pages 147-172 | Published online: 24 Feb 2005

Bibliography

  • 1997 Heart and Stroke Statistical Update. American Heart Association. Dallas, TX. (http: //www.americanheart.org).
  • INTERNATIONAL LIPID INFORMATION BUREAU: Blood lipids and coronary heart disease. In: The ILIB Lipid Handbook for Clinical Practice. Morris Plains, NJ (1995).
  • NATIONAL CHOLESTEROL EDUCATION PROGRAM: Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). Second report of the National Cholesterol Education Program (NCEP). Circulation (1994) 89:1329–1445.
  • SUPERKO HR: The atherogenic lipoprotein profile. Sci. Med. (1997):36–45.
  • PATSCH W, GOTTO AM, Jr.: High-density lipoprotein cholesterol, plasma triglyceride, and coronary heart disease: pathophysiology and management. Adv. Pharmacol. (1995) 32:375–426.
  • WILT VM, GUMS JG: 'Isolated' low high-density lipoprotein cholesterol. Ann. Pharmacother. (1997) 31:89–97.
  • VEGA GL, GRUNDY SM: Hypoalphalipoproteinemia (low high density lipoprotein) as a risk factor for coronary heart disease. Curr. Opin. Lipidol. (1996) 7:209–216.
  • RUBINS HB, ROBINS SJ, COLLINS D: The Veterans Affairs high-density lipoprotein intervention trial: baseline characteristics of normocholesterolemic men with coronary artery disease and low levels of high-density lipoprotein cholesterol. Am. J. Cardiol. (1996) 78:572–575.
  • GRUNDY SM: Small LDL, atherogenic dyslipidaemia, and the metabolic syndrome. Circulation (1997) 95:1–4.
  • REAVEN GM: Role of insulin resistance in human disease (Syndrome X): an expanded definition. Ann. Rev. Med. (1993) 44:121–131.
  • Woodford FP, Davignon J, Sniderman A (Eds.), Elsevier Science BV, Amsterdam (1995): 516–519.
  • Woodford FP, Davignon J, Sniderman A (Eds.), Elsevier Science BV, Amsterdam (1995):520–524.
  • SEMPOS CT, CLEEMAN JI, CARROLL MD, et al.: Prevalence of high blood cholesterol among US adults. An update on guidelines from the second report of the National Cholesterol Education Program Adult Treatment Panel. J. Am. Med. Assoc. (1993) 269:3009–3014.
  • BAYS HE, DUJOVNE CA, LANSING AM: Drug treatment of dyslipidemias: practical guidelines for the primary care physician. Heart Dis. Stroke (1992) 1:357–365.
  • RUBINS HB, ROBINS SJ, COLLINS D, et al.: Distribution of lipids in 8500 men with coronary artery disease. Am. J. Cardiol. (1995) 75:1196–1201.
  • Gilman AG, Goodman LS, Rall TW, Murad F (Eds.), MacMillan Publishing Co., NY (1985) Chapter 34:827–845.
  • LIPID RESEARCH CLINICS PROGRAM: The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. J. Am. Med. Assoc. (1984) 251:351–374.
  • BLANKENHORN DH, NESSIM SA, JOHNSON RI, et al.: Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. J. Am. Med. Assoc. (1987) 257:3233–3240.
  • THE LOVASTATIN GROUP III: A multicenter comparison of lovastatin and cholestyramine therapy for severe primary hypercholesterolaemia. J. Am. Med. Assoc. (1988) 260:359–366.
  • TONSTAD S: A rational approach to treating hypercholesterolaemia in children. Weighingthe risks and benefits. Drug Safety (1997) 16:330–341.
  • SCANDINAVIAN SIMVASTATIN SURVIVAL STUDY GROUP: Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet (1994) 344:1383–1389.
  • SHEPHERD J, COBBE SM, FORD I, et al.: Prevention of coronary heart disease with pravastatin in men with hypercholesterolaemia. New Engl. J. Med. (1995) 333:1301–1307.
  • SACKS, FM, PFEFFER MA, MOYE LA, et al.: The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. New Engl. J. Med. (1996) 335:1001–1009.
  • LEA AP, MCTAVISH D: Atorvastatin. A review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs (1997) 53:828–847.
  • NAWROCKI JW, WEISS SR, DAVIDSON MH, et al.: Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolaemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler. Thromb. Vasc. Biol. (1995) 15:678–682.
  • BAKKER-ARKEMA RG, DAVIDSON MH, GOLDSTEIN RJ, et al.: Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridaemia. J. Am. Med. Assoc. (1996) 275:128–133.
  • FRICK MH, ELO 0, HAAPA K, et al.: Helsinki heart study: primary prevention trial with gemfibrozil in middle aged men with dyslipidaemia. New Engl. J. Med. (1987) 317:1237–1245.
  • ERICSSON CG, HAMSTEN A, NILSSON J, et al.: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet (1996) 347:849–853.
  • FRICK MH, SYVANNE M, NIEMINEN MS, et al.: Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation (1997) 96:2137–2143.
  • CORONARY DRUG PROJECT RESEARCH GROUP: Clofibrate and niacin in coronary heart disease. J. Am. Med. Assoc. (1975) 231:360–381.
  • CANNER PL, BERGE KG, WENGER NK, et al.: Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. (1986) 8:1245–1255.
  • PASTERNAK RC, BROWN LE, STONE PH, et al.: Effect of combination therapy with lipid-reducing drugs in patients with coronary heart disease and 'normal' cholesterol levels. Ann. Intern. Med. (1996) 125:529–540.
  • IMS, Midas database (1997).
  • BILLHEIMER J, FISCHER F, GERMAIN S, et al.: DMP-504: a hydrogel bile acid sequestrant: Part 2- Mechanism of action studies in the hamster. Twelfth International Symposium on Drugs Affecting Lipid Metabolism. Houston, TX (1995):139.
  • MANDEVILLE WH, GOLDBERG DI.: The sequestration of bile acids, a non-absorbed method for cholesterol reduction. A review. Curr. Pharm. Design (1997) 3:15–28.
  • HOMMA Y, KOBAYASHI T, OZAWA H, et al.: Effects of a new bile acid sequestering resin, MCI-196, on plasma lipoprotein subfractions. Twelfth International Symposium on Drugs Affecting Lipid Metabolism. Houston, TX (1995)59.
  • HAYVVARD CM, HAMANAKA ES, AIELLO RJ, et al.: Discovery of the squalene synthetase inhibitor CP-340868. Atherosclerosis (1997) 134:125.
  • HARRITY TW, GEORGE RJ, CIOSEK CP, et al.: BMS-188494, an orally active squalene synthase inhibitor which lowers cholesterol in animals. Twelfth International Symposium on Drugs Affecting Lipid Metabolism. Houston, TX (1995) 54.
  • DICKSON JK, BILLER SA, MAGNIN DR, et al.: Orally active squalene synthetase inhibitors: Bis((acyloxy) alkyl) prodrugs of the a-phosphonosulfonic acid moiety. J. Med. Chem. (1996) 39:661–664.
  • HARWOOD HJ JR., CHANDLER CE, PELLARIN LD, et al.: Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin 0- tigogenin cellobioside (CP-88818; tiqueside). J. Lipid Res. (1993) 34:377–395.
  • HARRIS WS, DUJOVNE CA, WINDSOR SL, et al.: Inhibiting cholesterol absorption with CP-88818 (0-tigogenin cellobioside; Tiqueside): studies in normal and hyperlipidaemic subjects. J. Cardiovasc. Pharmacol. (1997) 30:55–60.
  • MCCARTHY PA, DENINNO MP, MOREHOUSE LA, et al.: 11-Ketotigogenin cellobioside (pamaqueside): a potent cholesterol absorption inhibitor in the hamster. J. Med. Chem. (1996) 39:1935–1937.
  • HARRIS WS, WINDSOR SL, NEWTON FA, et al.: Inhibition of cholesterol absorption with CP-148623 lowers serum cholesterol in humans. Clin. Pharmacol. Ther. (1997) 61:385–389.
  • SALISBURY BG, DAVIS HR, BURRIER RE, et al.: Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, Sch48461. Atherosclerosis (1995) 115:45–63.
  • VAN HEEK M, FRANCE CF, COMPTON DS, et al.: In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J. Pharmacol. Exp. Ther. (1997) 283:157–163.
  • ROTH BD: ACAT inhibitors: evolution from cholesterol absorption inhibitors to antiatherosclerotic agents. Drug Disc. Today (1998) 3:19–25.
  • HOMAN R, KRAUSE BR.: Established and emerging strategies for inhibition of cholesterol absorption. Curr. Pharm. Design. (1997) 3:29–44.
  • WETTERAU JR, LIN MCM, JAMIL H: Microsomal triglyceride transfer protein. Biochim. Biophys. Acta (1997) 1345: 136–150.
  • GORDON DA, WETTERAU JR, GREGG RE: Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell Biol. (1995) 5:317–321.
  • WETTERAU JR, AGGERBECK LP, BOUMA ME, et al.: Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinaemia. Science (1992) 258:999–1001.
  • JAMIL H, GORDON DA, EUSTICE DC, et al.: An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from Hep-G2 cells. Proc. Natl. Acad. Sci. USA (1996) 93:11991–11995.
  • RADER DJ, BREWER HB, Jr.: Abetalipoproteinemia. New insights into lipoproteinassembly and vitamin E metabolism from a rare genetic disease. J. Am. Med. Assoc. (1993) 270:865–869.
  • Food and Drug Administration Endocrinologic and Metabolic Drugs Advisory Committee #67 Meeting on Orlistat (XenicaL tetrahydrolipstatin). Bethesda, MD (14 May 1997).
  • AVIRAM M, LUBOSHITZKY R, BROOK JG: Lipid and lipoprotein pattern in thyroid dysfunction and the effect of therapy. Clin. Biochem. (1982) 15:62–66.
  • LEESON PD, EMMETT JC, SHAH VP, et al.: Selective thyromimetics. Cardiac-sparing thyroid hormone analogues containing 3'-arylmethyl substituents. J. Med. Chem. (1989) 32:320–336.
  • HANSSON P, VALDERMARSSON S, NILSSON-EHLE P: Experimental hyperthyroidism in man: effects on plasma lipoproteins, lipoprotein lipase and hepatic disease. Hormone Metab. Res. (1983) 15:449–452.
  • PACKARD CJ, SHEPHERD J, LINDSAY GM, et al.: Thyroid replacement therapy and its influence on postheparin plasma lipases and apolipoprotein-B metabolism in hypothyroidism. J. Clin. Endocr. Metab. (1993) 76:1209–1216.
  • OPPENHEIMER JH, SCHWARTZ HL, MARIASH CN, et al.: Advances in our understanding of thyroid hormone action at the cellular level. Endocrinol. Rev. (1987) 8:288–308.
  • UNDERWOOD AH, EMMETT JC, ELLIS D, et al.: A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature (1986) 324:425–429.
  • SOYAL SM, SEELOS C, LIN-LEE YC, et al.: Thyroid hormone influences the maturation of apolipoprotein Al mRNA in rat liver. J. Biol. Chem. (1995) 270:3996–4004.
  • NESS GC, LOPEZ D: Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7a-hydroxylase by thyroid hormone. Arch. Biochem. Biophys. (1995) 323:404–408.
  • MOORADIAN AD, WONG NCW, SHAH GN: Age-related changes in the responsiveness of apolipoprotein Al to thyroid hormone. Am. J. Physiol. (1996) 271:R1602–R1607.
  • RID GEWAY ND, DOLPHIN PJ: Serum activity and hepatic secretion of LCAT in experimental hypothyroidism and hypercholesterolaemia. J. Lipid Res. (1985) 26:1300–1313.
  • HULSMANN WC, OERLEMANS MC, GEELHOED-MIERAS MM: Effect of hypothyroidism, diabetes and polyunsaturated fatty acids on heparin-releasable rat liver lipase. Biochem. Biophys. Res. Commun. (1977) 79:784–788.
  • SEVERSON DL, FLETCHER T: Effect of thyroid hormones on acid cholesterol ester hydrolase activity in rat liver, heart and epididymal fat pads. Biochim. Biophys. Acta (1981) 675:256–264.
  • Thyrotoxicosis. Disease of the Month (1997) 43:601–680.
  • POLIKAR R, BURGER AG, SCHERRER U, et al.: The thyroid and the heart. Circulation (1993) 87:1435–1441.
  • WARTOFSKY L, INGBAR L: Diseases of the thyroid. In: Harrison's Principles of Internal Medicine (Twelfth Edition). Wilson JE, Braunwald E, Isselbacher KJ et al. (Eds.), McGraw Hill, Inc., NY (1991) Chapter 316:1692–1712.
  • IOSSA S, MOLLICA MP, LIONETTI L, et al.: Effect of a high fat diet on energy balance and thermic effect of food in hypothyroid rats. Eur. J. Endocrinol. (1997) 136:309–315.
  • TAYLOR AH, STEPHAN ZF, STEELE RE, et al.: Beneficial effects of a novel thyromimetic on lipoprotein metabolism. Mol. Pharmacol. (1997) 52:542–547.
  • STEPHAN ZH, YURACHEK EC, SHARIF R, et al.: Demonstration of potent lipid-lowering activity of a thyromimetic agent devoid of cardiovascular and thermogenic effects. Atherosclerosis (1996) 126:53–63.
  • Woodford FP, Davignon J, Sniderman A (Eds.), Elsevier Science By, Amsterdam (1995):321–324.
  • MORGAN JM, CHANG SW, LINBERG L: Single dose safety, tolerability and pharmacokinetics of CGS-26214 in healthy males. J. Clin Pharmacol. (1997) 37:858.
  • NATHAN L, CHAUDHURI G: Estrogens and atherosclerosis. Ann. Rev. Pharmacol. Toxicol. (1997) 37:477–515.
  • GRANFONE A, CAMP OS H, MCNAMARA JR, et al.: Effects of oestrogen replacement on plasma lipoproteins and apolipoproteins in postmenopausal, dyslipidemic women. Metabolism (1992) 41:1193–1198.
  • KUIPER GGJM, GUSTAFSSON JA: The novel estrogen receptor-f3 subtype: potential role in the cell- and promoter-specific actions of estrogens and antiestrogens. FEBS Lett. (1997) 410:87–90.
  • PARINI P, ANGELIN B, RUDLING M: Importance of estrogen receptors in hepatic LDL receptor regulation. Arterioscler. Thromb. Vasc. Biol. (1997) 17:1800–1805.
  • PETTERSSON K, GRANDIEN K, KUIPER GGJM, et al.: Mouse estrogen receptor f3 forms estrogen response element-binding heterodimers with estrogen receptor a. Mol. Endocrinol. (1997) 11:1486–1496.
  • WATANABE T, INOUE S, OGAWA S, et al. Agonistic effect of tamoxifen is dependent on cell type, ERE-promoter context, and estrogen receptor subtype: functional difference between estrogen receptors a and 0. Biochem. Biophys. Res. Commun. (1997) 236:140–145.
  • PAECH K, WEBB P, KUIPER GGJM, et al.: Differential ligand activation of estrogen receptors ERa and ERf3 at AP1 sites. Science (1997) 277:1508–1510.
  • IAFRATI MD, KARAS RH, ARONOVITZ M, et al.: Estrogen inhibits the vascular injury response in estrogen receptor a-deficient mice. Nature Med. (1997) 3:545–548.
  • PACE P, TAYLOR J, SUNTHARALINGAM S, et al.: Human estrogen receptor 13 binds DNA in a manner similar to and dimerizes with estrogen receptor a. J. Biol. Chem. (1997) 272:25832–25838.
  • DRAPER MW, FLOWERS DE, HUSTLER WJ, et al.: A controlled trial of raloxifene (LY139481) HC1: impact on bone turnover and serum lipid profile in healthy postmenopausal women. J. Bone Miner. Res. (1996) 11:835–842.
  • SAARTO T, BLOMQVIST C, EHNHOLM C, et al.: Antiatherogenic effects of adjuvant antiestrogens: a randomized trial comparing the effects of tamoxifen and toremifene on plasma lipid levels in postmenopausal women with node-positive breast cancer. J. Clin. Oncol. (1996) 14:429–433.
  • SULLIVAN JM: Estrogen replacement. Circulation (1996) 94:2699–2702.
  • ROSSOUW JE: Estrogens for prevention of coronary heart disease. Putting the breaks on the bandwagon. Circulation (1996) 94:2982–2985.
  • LEMBERGER T, DES VERGNE B, WAHLI W: Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Ann. Rev. Cell Dev. Biol. (1996) 12:335–363.
  • SCHOONJANS K, MARTIN G, STAELS B, et al.: Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr. Opin. Lipidol. (1997) 8:159–166.
  • STAELS B, AUWERX J: Role of PPAR in the pharmacological regulation of lipoprotein metabolism by fibrates and thiazolidinediones. Curr. Pharm. Design (1997) 3:1–14.
  • SCHOONJANS K, STAELS B, AUWERX J: The peroxisome proliferator-activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta (1996) 1302:93–109.
  • KLIEWER SA, SUNDSETH SS, JONES SA, et al.: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors a and y. Proc. Natl. Acad. Sci. USA (1997) 94:4318–4323.
  • FORMAN BM, CHEN J, EVANS RM: Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferator-activated receptors a and S. Proc. Natl. Acad. Sci. USA (1997) 94:4312–4317.
  • KREY G, BRAISSANT 0, L'HORSET F, et al.: Fatty acids, eicosanoids, and hypolipidaemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. (1997) 11:779–791.
  • LAMBE KG, TUGWOOD JD: A human peroxisome proliferator-activated receptor-y is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur. J. Biochem. (1996) 239:1–7.
  • WILLSON TM, COBB JE, COWAN DJ, et al.: The structure-activity relationship between peroxisome proliferator-activated receptor y agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. (1996) 39:665–668.
  • LEHMANN JM, MOORE LB, SMITH-OLIVER TA, et al.: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor y (PPAR y). J. Biol. Chem. (1995) 270:12953–12956.
  • HENKE BR: The design synthesis and anti-hyperglycemic activity of PPAR-gamma agonists. Conference fast-track new chemical entities. Derwent Info. Serv. (1997) 5:5.
  • BROWN PJ, STUART LW, HURLEY KP, et al.: Discovery of fibrate PPAR ligands. Conference fast-track new chemical entities. Derwent Info. Serv. (1997) 5:25.
  • SPENCER CM, MARKHAM A: Troglitazone. Drugs (1977) 54:89–101.
  • HULIN B, MCCARTHY PA, GIBBS EM: The glitazone family of antidiabetic agents. Curr. Pharm. Design (1996) 2:85–102.
  • GROSSMAN SL, LESSEM J: Mechanisms and clinical effects of thiazolidinediones. Exp. Opin. Invest. Drugs (1997) 6:1025–1040.
  • YOUNG PW, CRAWTHORNE MA, COYLE PJ, et al.: Repeat treatment of obese mice with BRL 49653, a new and potent insulin sensitizer enhances insulin action in white adipocytes. Diabetes (1995) 44:1087–1092.
  • GORDON DJ, PROBSTFIELD JL, GARRISON RJ, et al.: High density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation (1989) 79:8–15.
  • FIELDING CJ, FIELDING PE: Molecular physiology of reverse cholesterol transport. J. Lipid Res. (1995) 36:211–228.
  • BARTER PJ, RYE KA: Molecular mechanisms of reverse cholesterol transport. Curr. Opin. Lipidol. (1996) 7:82–87.
  • EISENBERG S: High density lipoprotein metabolism. J. Lipid Res. (1984) 25:1017–1058.
  • TALL A: Plasma lipid transfer proteins. Ann. Rev. Biochem. (1995) 64:235–257.
  • MAROTTI KR, CASTLE CK, BOYLE TP, et al.: Severe atherosclerosis in transgenic mice expressing simian cholesterol ester transfer protein. Nature (1993) 364:73–75.
  • INAZU A, BROWN ML, HESLER CB, et al.: Increased high-density lipoprotein levels caused by a common cholesterol ester transfer protein gene mutation. New Engl. J. Med. (1990) 323:1234–1238.
  • HAYEK T, MASUCCI-MAGOULAS L, JIANG X, et al.: Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesterol ester transfer protein transgene. J. Clin. Invest. (1995) 96:2071–2074.
  • ZHONG S, SHARP DS, GROVE JS, et al.: Increased coronary heart disease in Japanese-American men with mutation in the cholesterol ester transfer protein gene despite increased HDL levels. J. Clin. Invest. (1996) 97:2917–2923.
  • Miller NE, Miller GJ (Eds.), Elsevier Science Publishers, NY (1984):187–215.
  • ORAM JF, ALBERS JJ, CHEUNG MC, et al.: The effects of subfractions of high density lipoprotein cholesterol efflux from cultured fibroblasts. J. Biol. Chem. (1981) 256:8348–8356.
  • CLAY MA, BARTER PJ: Formation of new HDL particles from lipid-free apolipoprotein A-I. J. Lipid Res. (1996) 37:1722–1732.
  • ORAM JF, YOKOYAMA S: Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J. Lipid Res. (1996) 37:2473–2491.
  • MILLER NE, HAMMETT F, SALTISSI S, et al.: Relation of angiographically defined coronary artery disease to plasma lipoprotein subfractions and apolipoproteins. Br. Med. J. (1981) 282:1741–1744.
  • PUCHOIS P, KANDOUSSI A, FIEVET P, et al.: Apolipoprotein A-1 containing lipoproteins in coronary artery disease. Atherosclerosis (1987) 68:35–40.
  • AVAGARO P, BITTOLO-BON G, CAZZOLATO G, et al.: Are apolipoproteins better discriminators than lipids for atherosclerosis Lancet (1979) 1:901–903.
  • MIYAZAKI A, SAKUMA S, MORIKAWA W et al.: Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. (1995) 15:1882–1888.
  • NANJEE MN, CROUSE JR, KING JM, et al.: Effects of intravenous infusion of lipid-free apoAI in humans. Arterioscler. Thromb. Vasc. Biol. (1996) 16:1203–1214.
  • NG DS, VEZINA C, WOLEVER TS, et al.: Apolipoprotein A-I deficiency. Biochemical and metabolic characteristics. Arterioscler. Thromb. Vasc. Biol. (1995) 15: 2157–2164.
  • TALL AR: Plasma high density lipoproteins, metabolism and relationship to atherosclerosis. J. Clin. Invest. (1990) 86:379–384.
  • GOLDBERG IJ: Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. (1996) 37:693–707.
  • GOLDBERG IJ, BLANER WS, VANNI TM, et al.: Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. J. Clin. Invest. (1990) 86:463–473.
  • MIESENBOCK G, HOLZL B, FOGER B, et al.: Heterozygous lipoprotein lipase deficiency due to missense mutation as the cause of impaired triglyceride tolerance with multiple lipoprotein abnormalities. J. Clin. Invest. (1993) 91:448–455.
  • SHIMADA M, ISHIBASHI S, INABA T, et al.: Suppression of diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc. Natl. Acad. Sci. USA (1996) 93:7242–7246.
  • TSUTSUMI K, INOUE Y, HAGI Yet al.: The novel compound NO-1886 elevates plasma HDL cholesterol levels in hamsters and rabbits by increasing lipoprotein lipase without any effect on cholesterol ester transfer protein activity. Metabolism (1997) 46:257–260.
  • FRANCONE OL, HAGHPASSAND M, BENNETT JA, et al.: Expression of human lecithin:cholesterol acyltransferase in transgenic mice: effects on cholesterol eflux esterification and transport. J. Lipid Res. (1997) 38:813–822.
  • HOEG, JM, SANTAMARINA-FOJO S, BERARD AM, et al.: Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl. Acad. Sci. USA (1996) 93:11448–11453.
  • MEZDOUR H, JONES R, DENGREMONT C, et al.: Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice. J. Biol. Chem. (1997) 272:13570–13575.
  • SCHISSEL SL, TWEEDIE-HARDMAN J, RAPP JH, et al.: Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein.Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. (1996) 98:1455–1464.
  • SCHEEK S, BROWN MS, GOLDSTEIN JL: Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc. Natl. Acad. Sci. USA (1997) 94:11179–11183.
  • JI Y, JIAN B, WANG N, et al.: Scavenger receptor BI promotes high-density lipoprotein-mediated cellular cholesterol efflux. J. Biol. Chem. (1997). 272:20982–20985.
  • LAGROST L: The role of cholesterol ester transfer protein and phospholipid transfer protein in the remodeling of plasma high-density lipoproteins. Trends Cardiovasc. Med. (1997) 7:218–224.
  • RAO R, ALBERS JJ, WOLFBAUER G, et al.: Molecular and macromolecular specificity of human plasma phospholipid transfer protein. Biochemistry (1997) 36:3645–3653.
  • AALTO-SETALA K, WEINSTOCK PH, BISGAIER CL, et al.: Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apo-CIII transgenic mice. J. Lipid Res. (1996) 37:1802–1811.
  • EBARA T, RAMAKRISHNAN R, STEINER G, et al.: Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridaemia is not mediated by effects on apolipoprotein. J. Clin. Invest. (1997) 99:2672–2681.
  • SCHACHTER NS, HAYEK T, LEFF T, et al.: Overexpression of apolipoprotein CII causes hypertriglyceridaemia in transgenic mice. J. Clin. Invest. (1994) 93:1683–1690.
  • KUHN H, CHAN L: The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Curr. Opin. Lipidol. (1997) 8:111–117.
  • FEINMARK SJ, CORNICELLI JA: Is there a role for 15-lipoxygenase in atherosclerosis Biochem. Pharmacol. (1997) 54:953–959.
  • HURT-CAMEJO E, CAMEJO G: Potential involvement of type II phospholipase A2 in atherosclerosis. Atherosclerosis (1997) 132:1–8.
  • BROWN MS, GOLDSTEIN JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell (1997) 89:331–340.
  • STEIN JH, ROSENSON RS: Lipoprotein Lp(a) excess and coronary heart disease. Arch. Intern. Med. (1997) 157:1170–1176.
  • HAMILTON CA: Low-density lipoprotein and oxidized low-density lipoprotein: their role in the development of atherosclerosis. Pharmacol. Ther. (1997) 74:55–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.