289
Views
100
CrossRef citations to date
0
Altmetric
Review

Trypanosoma cruzi targets for new chemotherapeutic approaches

&
Pages 105-121 | Published online: 08 Dec 2008

Bibliography

  • Reddy M, Gill SS, Kalkar SR, et al. Oral drug therapy for multiple neglected tropical diseases: a systematic review. JAMA 2007;298:1911-24
  • Dias JC. Globalization, inequity and Chagas disease. Cad Saude Publica 2007;23:13-22
  • Schmunis GA. Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 2007;102(Suppl 1):75-85
  • WHO. Control of Chagas Disease. Technical Reports Series 2002;905:1-109
  • Dias JC, Prata A, Correia D. Problems and perspectives for Chagas disease control: in search of a realistic analysis. Rev Soc Bras Med Trop 2008;41:193-6
  • Bilate AM, Cunha-Neto E. Chagas disease cardiomyopathy: current concepts of an old disease. Rev Inst Med Trop Sao Paulo 2008;50:67-74
  • Tarleton RL, Reithinger R, Urbina JA, et al. The challenges of Chagas Disease – grim outlook or glimmer of hope. PLoS Med 2007;4;e332. Published online 27 December 2007, doi:10.1371/journal.pmed.0040332
  • Rocha MO, Teixeira MM, Ribeiro AL. An update on the management of Chagas cardiomyopathy. Expert Rev Anti Infect Ther 2007;5:727-43
  • Coura JR, de Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 2002;97:3-24
  • Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg 1987;81:755-9
  • Marin-Neto JA, Rassi A Jr, Morillo CA, et al. Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas' cardiomyopathy: the BENznidazole Evaluation For Interrupting Trypanosomiasis (BENEFIT). Am Heart J 2008;156:37-43
  • Viotti R, Vigliano C. Etiological treatment of chronic Chagas disease: neglected evidence by evidence-based medicine. Expert Rev Anti Infect Ther 2007;5:717-26
  • Viotti R, Vigliano C, Lococo B, et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 2006;144:724-34
  • Heby O, Persson L, Rentala M. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis. Amino Acids 2007;33:359-66
  • Gonzalez-Perdomo M, De Castro SL, Meirelles MNL, et al. Trypanosoma cruzi proliferation and differentiation is blocked by topoisomerase II inhibitors. Antimicrob Agents Chemother 1990;34:1707-14
  • Fragoso SP, Mattei D, Hines JC, et al. Expression and cellular localization of Trypanosoma cruzi type II DNA topoisomerase. Mol Biochem Parasitol 1998;94:197-204
  • Neres J, Bryce RA, Douglas KT. Rational drug design in parasitology: trans-sialidase as a case study for Chagas disease. Drug Discov Today 2008;13:110-17
  • Chamond N, Goytia M, Coatnoan N, et al. Trypanosoma cruzi proline racemases are involved in parasite differentiation and infectivity. Mol Microbiol 2005;58:46-60
  • Steverding D, Tyler KM. Novel antitrypanosomal agents. Expert Opin Investig Drugs 2005;14:939-55
  • Linares GEG, Ravaschino EL, Rodriguez JB. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 2006;13:335-60
  • Maya JD, Cassels BK, Iturriaga-Vasquez P, et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 2007;146:601-20
  • Duschak VG, Couto AS. An insight on targets and patented drugs for chemotherapy of Chagas disease. Recent Patents Anti-Infect Drug Discov 2007;2:19-51
  • Urbina JA. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology 1997;114(Suppl):S91-9
  • Urbina JA. Specific treatment of Chagas disease: current status and new developments. Curr Opin Infect Dis 2001;14:733-41
  • Urbina JA. New chemotherapeutic approaches for the treatment of Chagas disease (American Trypanosomiasis). Expert Opin Ther Patents 2003;13:661-9
  • Buckner FS. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. Adv Exp Med Biol 2008;625:61-80
  • Peñna-Díaz J, Montalvetti A, Flores CL, et al. Mitochondrial localization of the mevalonate pathway enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase in trypanosomatidae. Mol Biol Cell 2004;15:1356-63
  • Florin-Christensen M, Florin-Christensen J, Garin C, et al. Inhibition of Trypanosoma cruzi growth and sterol biosynthesis by lovastatin. Biochem Biophys Res Commun 1990;166:1441-5
  • Urbina JA, Lazardi K, Marchan E, et al. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother 1993;37:580-91
  • Garzoni LR, Caldera A, Meirelles MN, et al. Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. Int J Antimicrob Agents 2004;23:273-85
  • Garzoni LR, Waghabi MC, Baptista MM, et al. Antiparasitic activity of risedronate in a murine model of acute Chagas' disease. Int J Antimicrob Agents 2004b;23:286-90
  • Bouzahzah B, Jelicks LA, Morris SA, et al. Risedronate in the treatment of murine Chagas' disease. Parasitol Res 2005;96:184-7
  • Martin MB, Grimley JS, Lewis JC, et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 2001;44:909-16
  • Szajnman SH, Ravaschino EL, Docampo R, et al. Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase. Bioorg Med Chem Lett 2005;15:4685-90
  • Szajnman SH, Garcia Linares GE, Li ZH, et al. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2008;16:3283-90
  • DoCampo R, Moreno SNJ. Bisphosphonates as chemotherapeutic agents against trypanosomatids and Apicomplexan parasites. Curr Drug Targets-Infect Dis 2001;1:51-61
  • Ferella M, Li ZH, Andersson B, et al. Farnesyl diphosphate synthase localizes to the cytoplasm of Trypanosoma cruzi and Trypanosoma brucei. Exp Parasitol 2008;119:308-12
  • Gabelli SB, McLellan JS, Montalvetti A, et al. Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: implications for drug design. Proteins 2006;62:80-8
  • Urbina JA, Concepcion JL, Rangel S, et al. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol Biochem Parasitol 2002;125:35-45
  • Urbina JA, Concepcion JL, Montalvetti A, et al. Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas' disease. Antimicrob Agents Chemother 2003a;47:2047-50
  • Elhalem E, Bailey BN, Docampo R, et al. Design, synthesis, and biological evaluation of aryloxyethyl thiocyanate derivatives against Trypanosoma cruzi. J Med Chem 2002;45:3984-99
  • Braga MV, Urbina JA, De Souza W. Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrobial Agents 2004;24:72-8
  • Urbina JA, Concepcion JL, Caldera A, et al. In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob Agents Chemother 2004;48:2379-87
  • Sealey-Cardona M, Cammerer S, Jones S, et al. Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective inhibition by quinuclidine derivatives. Antimicrob Agents Chemother 2007;51:2123-9
  • Orenes-Lorente LS, Gomez R, Jimenez C, et al. Biphenylquinuclidines as inhibitors of squalene synthase and growth of parasitic protozoa. Bioorg Med Chem 2005;13:3519-29
  • Maldonado RA, Molina J, Payares G, et al. Experimental chemotherapy with combinations of ergosterol biosynthesis inhibitors in murine models of Chagas' disease. Antimicrob Agents Chemother 1993;37:1353-9
  • Joubert BM, Buckner FS, Matsuda SPT. Trypanosome and animal lanosterol synthases use different catalytic motifs. Org Lett 2001;3:1957-60
  • Buckner FS, Griffin JH, Wilson AJ, et al. Potent anti-Trypanosoma cruzi activities of oxidosqualene cyclase inhibitors. Antimicrob Agents Chemother 2001;45:1210-5
  • Hinshaw JC, Suh DY, Garnier P, et al. Oxidosqualene cyclase inhibitors as antimicrobial agents. J Med Chem 2003;46:4240-3
  • Oliaro-Bosso S, Ceruti M, Balliano G, et al. Analogs of squalene and oxidosqualene inhibit oxidosqualene cyclase of Trypanosoma cruzi expressed in Saccharomyces cerevisiae. Lipids 2005;40:1257-62
  • Oliaro-Bosso S, Viola F, Taramino S, et al. Inhibitory effect of umbelliferone aminoalkyl derivatives on oxidosqualene cyclases from Saccharomyces cerevisiae, Trypanosoma cruzi, and Pneumocystis carinii, Homo sapiens, and Arabidopsis thaliana: a structure-activity study. Chem Med Chem 2007;2:226-33
  • Galli U, Oliaro-Bosso S, Taramino S, et al. Design, synthesis, and biological evaluation of new (2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-ol ethers as inhibitors of human and Trypanosoma cruzi oxidosqualene cyclase. Bioorg Med Chem Lett 2007;17:220-4
  • McCabe RE, Remington JS, Araujo FG. In vitro and in vivo effects of itraconazole against Trypanosoma cruzi. Am J Trop Med Hyg 1986;35:280-4
  • McCabe RE, Remington JS, Araujo FG. Ketoconazole promotes parasitological cure of mice infected with Trypanosoma cruzi. Trans R Soc Trop Med Hyg 1987;81:613-5
  • Brener Z, Cancado JR, Galvão LM, et al. An experimental and clinical assay with ketoconazole in the treatment of Chagas disease. Mem Inst Oswaldo Cruz 1993;88:149-53
  • Solari A, Saavedra H, Sepulveda C, et al. Successful treatment of Trypanosoma cruzi encephalitis in a patient with hemophilia and AIDS. Clin Inf Dis 1993;16:255-9
  • Apt W, Arribada A, Zulantay I, et al. Itraconazole or allopurinol in the treatment of chronic American trypanosomiasis: the results of clinical and parasitological examinations 11 years post-treatment. Ann Trop Med Parasitol 2005;99:733-41
  • Urbina JA, Lazardi K, Aguirre T, et al. Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 1991;35:730-5
  • Urbina JA, Payares G, Sanoja C, et al. Parasitological cure of acute and chronic experimental Chagas disease using the long-acting experimental triazole TAK-187. Activity against drug-resistant Trypanosoma cruzi strains. Int J Antimicrob Agents 2003;21:39-48
  • Guedes PM, Urbina JA, de LM, et al. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob Agents Chemother 2004;48:4286-92
  • Corrales M, Cardozo R, Segura MA, et al. Comparative efficacies of TAK-187, a long-lasting ergosterol biosynthesis inhibitor, and benznidazole in preventing cardiac damage in a murine model of Chagas' disease. Antimicrob Agents Chemother 2005;49:1556-60
  • Molina J, Brener Z, Romanha AJ, et al. In vivo activity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite Trypanosoma cruzi. J Antimicrob Chemother 2000;46:137-40
  • Urbina JA, Payares G, Sanoja C, et al. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int J Antimicrobial Agents 2003;21:27-38
  • Urbina JA, Payares G, Contreras LM, et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother 1998;42:1771-7
  • Molina J, Martins-Filho O, Brener Z, et al. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother 2000;44:150-5
  • Ferraz ML, Gazzinelli RT, Alves RO, et al. The anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas' disease is less dependent on gamma interferon than that of benznidazole. Antimicrob Agents Chemother 2007;51:1359-64
  • Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 2003;19:495-501
  • Benaim G, Sanders JM, Garcia-Marchan Y, et al. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem 2006;49:892-9
  • Buckner FS, Wilson AJ, White TC, et al. Induction of resistance to azole drugs in Trypanosoma cruzi. Antimicrob Agents Chemother 1998;42:3245-50
  • Buckner F, Yokoyama K, Lockman J, et al. A class of sterol 14-demethylase inhibitors as anti-Trypanosoma cruzi agents. Proc Natl Acad Sci USA 2003;100:15149-53
  • Urbina JA, Vivas J, Lazardi K, et al. Antiproliferative effects of Δ24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy 1996;42:294-307
  • Magaraci F, Jimenez CJ, Rodrigues C, et al. Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. J Med Chem 2003;46:4714-27
  • Orenes-Lorente SO, Rodrigues JCF, Jimenez CJ, et al. Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 2004;48:2937-50
  • Gros L, Lorente SO, Jimenez CJ, et al. Evaluation of azasterols as anti-parasitics. J Med Chem 2006;49:6094-103
  • Cavalcanti DP, Thiry M, de Souza W, et al. The kinetoplast ultrastructural organization of endosymbiont-bearing trypanosomatids as revealed by deep-etching, cytochemical and immunocytochemical analysis. Histochem Cell Biol 2008; published online 10 June 2008, doi:10.1007/s00418-008-0450-7
  • Bray PG, Barrett MP, Ward SA, et al. Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 2003;19:232-9
  • Werbovetz K. Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Curr Opin Investig Drugs 2006;7:147-57
  • Wilson WD, Tanious FA, Mathis A, et al. Antiparasitic compounds that target DNA. Biochimie 2008;90:999-1014
  • Soeiro MNC, De Souza EM, Stephens CE, et al. Aromatic diamidines as antiparasitic agents. Expert Opin Investig Drugs 2005;14:957-72
  • Wilson WD, Nguyen B, Tanious FA, et al. Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr Med Chem Anticancer Agents 2005;5:389-408
  • Mathis AM, Holman JL, Sturk LM, et al. Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob Agents Chemother 2006;50:2185-91
  • De Souza EM, Melo G, Boykin DW, et al. Trypanocidal activity of the phenyl-substituted analogue of furamidine DB569 against Trypanosoma cruzi infection in vivo. J Antimicrob Chemother 2006;58:610-14
  • Singh G, Dey CS. Induction of apoptosis-like cell death by pentamidine and doxorubicin through differential inhibition of topoisomerase II in arsenite-resistant Leishmania donovani. Acta Trop 2007;103:172-85
  • Soeiro MNC, De Souza EM, Boykin DW. Antiparasitic activity of aromatic diamidines and their patented literature. Expert Opin Ther Patents 2007;17:1-13
  • Soeiro MNC, de Castro SL, Souza EM, et al. Diamidines activity upon trypanosomes: the state of the art. Curr Mol Pharmacol 2008;1:151-61
  • De Souza EM, Lansiaux A, Bailly C, et al. Phenyl substitution of furamidine markedly potentiates its antiparasitic activity against Trypanosoma cruzi and Leishmania amazonensis. Biochem Pharmacol 2004;68:593-600
  • De Souza EM, Menna-Barreto R, Araújo-Jorge TC, et al. Antiparasitic activity of aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitology 2006;133:75-9
  • De Souza EM, Oliveira GM, Soeiro MNC. Electrocardiographic findings in acutely and chronically Trypanosoma cruzi-infected mice treated by a phenyl-substituted analogue of furamidine DB569. Drug Targets Insights 2007;2:61-9
  • Silva CF, Batista MM, Batista DG, et al. In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi. Antimicrob Agents Chemother 2008;52:3307-14
  • Stephens CE, Tanious F, Kim S, et al. Diguanidino and “reversed” diamidino 2,5-diarylfurans as antimicrobial agents. J Med Chem 2001;44:1741-8
  • Silva CF, Meuser MB, Mota RA, et al. Activity of “reversed” diamidines against Trypanosoma cruzi in vitro. Biochemical Pharmacol 2007;73:1939-46
  • Stephens CE, Brun R, Salem MM, et al. The activity of diguanidino and “reversed” diamidino 2,5-diarylfurans versus Trypanosoma cruzi and Leishmania donovani. Bioorg Med Chem Lett 2003;13:2065-9
  • Messeder JC, Tinoco W, Figueroa-Villar JD, et al. Aromatic guanylhydrazones: Synthesis, structural studies and in vitro activity against Trypanosoma cruzi. Bioorganic Med Chem Let 1995;24:3079-84
  • Silva CF, Meuser MB, De Souza EM, et al. Cellular effects of reversed amidines on Trypanosoma cruzi. Antimicrob Agents Chemother 2007;51:3803-9
  • Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 2008;1780:1236-48
  • Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 1992;46:695-729
  • Krauth-Siegel RL, Enders B, Henderson GB, et al. Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur J Biochem 1987;164:123-8
  • Henderson GB, Ulrich P, Fairlamb AH, et al. “Subversive” substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease. Proc Natl Acad Sci USA 1988;85:5374-8
  • Blumenstiel K, Schoeneck R, Yardley V, et al. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochem Pharmacol 1999;58:1791-99
  • Salmon-Chemin L, Buisine E, Yardley V, et al. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 2001;44:548-65
  • Khan MO, Austin SE, Chan C, et al. Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J Med Chem 2000;43:3148-56
  • Augustyns K, Amssoms K, Yamani A, et al. Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curr Pharm Des 2001;7:1117-41
  • Otero L, Vieites M, Boiani L, et al. Novel antitrypanosomal agents based on palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism as potential therapeutic targets. J Med Chem 2006;49:3322-31
  • Galarreta BC, Sifuentes R, Carrillo AK, et al. The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors. Bioorg Med Chem 2008;16:6689-95
  • Cota BB, Rosa LH, Fagundes EM, et al. A potent trypanocidal component from the fungus Lentinus strigosus inhibits trypanothione reductase and modulates PBMC proliferation. Mem Inst Oswaldo Cruz 2008;103:263-70
  • Parveen S, Khan MO, Austin SE, et al. Antitrypanosomal, antileishmanial, and antimalarial activities of quaternary arylalkylammonium 2-amino-4-chlorophenyl phenyl sulfides, a new class of trypanothione reductase inhibitor, and of N-acyl derivatives of 2-amino-4-chlorophenyl phenyl sulfide. J Med Chem 2005;48:8087-97
  • Schmidt A, Krauth-Siegel RL. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem 2002;2:1239-59
  • Sant'anna C, Parussini F, Lourenço D, et al. All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 2008; published online 12 August 2008, doi:10.1007/s00418-008-0486-8
  • Chung JY, Bae YA, Na BK, et al. Cysteine protease inhibitors as potential antiparasitic agents. Expert Opin Ther Patents 2005;15:995-1007
  • González FV, Izquierdo J, Rodríguez S, et al. Dipeptidyl-α,β-epoxyesters as potent irreversible inhibitors of the cysteine proteases cruzain and rhodesain. Bioorg Med Chem Lett 2007;17:6697-700
  • Chen YT, Lira R, Hansell E, et al. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg Med Chem Lett 2008;18:5860-3
  • Engel JC, Doyle PS, Hsieh I, et al. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998;188:725-34
  • Barr SC, Warner KL, Kornreic BG, et al. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 2005;49:5160-61
  • Doyle PS, Zhou YM, Engel JC, et al. A cysteine protease inhibitor cures Chagas disease in an immunodeficient murine model of infection. Antimicrob Agents Chemother 2007;51:3932-9
  • Du X, Hansell E, Engel JC, et al. Aryl ureas represent a new class of anti-trypanosomal agents. Chem Biol 2000;7:733-42
  • Rodrigues CR, Flaherty TM, Springer C, et al. CoMFA and HQSAR of acylhydrazide cruzain inhibitors. Bioorg Med Chem Lett 2002;12:1537-41
  • Choe Y, Brinen LS, Price MS, et al. Development of α-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorg Med Chem 2005;13:2141-56
  • Brak K, Doyle PS, McKerrow JH, et al. Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc 2008;130:6404-10
  • Fothergill-Gilmore LA, Michels PAM. Evolution of glycolysis. Prog Biophys Mol Biol 1993;59:105-235
  • Périé J, Albuquerque C, Blonski C, et al. Rational concepts and the study of active molecules against various trypanosomiases. Bull Soc Pathol Exot 1994;87:353-61
  • Lakhdar-Ghazal F, Blonski C, Wilson M, et al. Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem 2002;2:439-56
  • Souza DH, Garratt RC, Araujo AP, et al. Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase: structure, catalytic mechanism and targeted inhibitor design. FEBS Lett 1998;424:131-5
  • Bressi JC, Verlinde CL, Aronov AM, et al. Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of trypanosomatidae via structure-based drug design. J Med Chem 2001;44:2080-93
  • Tomazela DM, Pupo MT, Passador EA, et al. Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities. Phytochemistry 2000;55:643-51
  • De Marchi AA, Castilho MS, Nascimento PG, et al. New 3-piperonylcoumarins as inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from Trypanosoma cruzi. Bioorg Med Chem 2004;12:4823-33
  • Hudock MP, Sanz-Rodriguez CE, Song Y, et al. Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J Med Chem 2006;49:215-23
  • Igoillo-Esteve M, Maugeri D, Stern AL, et al. The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. An Acad Bras Cienc 2007;79:649-63
  • Maugeri DA, Cazzulo JJ. The pentose phosphate pathway in Trypanosoma cruzi. FEMS Microbiol Lett 2004;234:117-23
  • Ullman B, Carter D. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates. Int J Parasitol 1997;27:203-13
  • Freymann DM, Wenck MA, Engel JC, et al. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem Biol 2000;7:957-68
  • Marr JJ. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med 1991;118:111-9
  • Gobbi P, Lo Presti MS, Fernandez AR, et al. Allopurinol is effective to modify the evolution of Trypanosoma cruzi infection in mice. Parasitol Res 2007;101:1459-62
  • Rassi A, Luquetti AO, Rassi A Jr, et al. Specific treatment for Trypanosoma cruzi: lack of efficacy of allopurinol in the human chronic phase of Chagas disease. Am J Trop Med Hyg 2007;76:58-61
  • Eakin AE, Guerra A, Focia PJ, et al. Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs. Antimicrob Agents Chemother 1997;41:1686-92
  • Reche P, Arrebola R, Santi DV, et al. Expression and characterization of the Trypanosoma cruzi dihydrofolate reductase domain. Mol Biochem Parasitol 1996;76:175-85
  • Zuccotto F, Zvelebil M, Brun R, et al. Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. Eur J Med Chem 2001;36:395-405
  • Gilbert IH. Inhibitors of dihydrofolate reductase in leishmania and trypanosomes. Bba Mol Basis Dis 2002;1587:249-57
  • Pez D, Leal I, Zuccotto F, et al. 2,4-Diaminopyrimidines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Bioorg Med Chem 2003;11:4693-711
  • Senkovich O, Bhatia V, Garg N, et al. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas' disease. Antimicrob Agents Chemother 2005;49:3234-8
  • DNDi home page. Available from: www.dndi.org
  • Courtney R, Pai S, Laughlin M, et al. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 2003;47:2788-95
  • Midgley I, Fitzpatrick K, Taylor LM, et al. Pharmacokinetics and metabolism of the prodrug DB289 (2,5-bis[4- (N-methoxyamidino)phenyl]furan monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride). Drug Metab Dispos 2007;35:955-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.