335
Views
27
CrossRef citations to date
0
Altmetric
Review

New promises for manipulation of kynurenine pathway in cancer and neurological diseases

Pages 247-258 | Published online: 13 Jan 2009

Bibliography

  • Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 2002;303:1-10
  • Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002;1(8):609-20
  • Ruddick JP, Evans AK, Nutt DJ, et al. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 2006;8(20):1-27
  • Birley S, Collins JF, Perkins MN, Stone TW. The effects of cyclic dicarboxylic acids on spontaneous and amino acid-evoked activity of rat cortical neurones. Br J Pharmacol 1982;77(1):7-12
  • Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 1989;52(4):1319-28
  • Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982;247(1):184-7
  • Hilmas C, Pereira EF, Alkondon M, et al. The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci 2001;21(19):7463-73
  • Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 2006;281(31):22021-8
  • Guidetti P, Schwarcz R. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 1999;11(11):3857-63
  • Goldstein LE, Leopold MC, Huang X, et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote α-crystallin cross-linking by metal ion reduction. Biochemistry 2000;39(24):7266-75
  • Gobaille S, Kemmel V, Brumaru D, et al. Xanthurenic acid distribution, transport, accumulation and release in the rat brain. J Neurochem 2008;105(3):982-93
  • Colabroy KL, Begley TP. The pyridine ring of NAD is formed by a nonenzymatic pericyclic reaction. J Am Chem Soc 2005;127(3):840-1
  • Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets 2007;7(1):31-40
  • Metz R, Duhadaway JB, Kamasani U, et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 2007;67(15):7082-7
  • Kwidzinski E, Bechmann I. IDO expression in the brain: a double-edged sword. J Mol Med 2007;85(12):1351-9
  • Dang Y, Dale WE, Brown OR. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic Biol Med 2000;28(4):615-24
  • Hönig A, Rieger L, Kapp M, et al. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol 2004;61(2):79-86
  • Prendergast GC. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 2008;27(28):3889-900
  • Guillemin GJ, Cullen KM, Lim CK, et al. Characterization of the kynurenine pathway in human neurons. J Neurosci 2007;27(47):12884-92
  • Guillemin GJ, Smith DG, Smythe GA, et al. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 2003;527:105-12
  • Guillemin GJ, Kerr SJ, Smythe GA, et al. Kynurenine pathway metabolism in human astrocytes. Adv Exp Med Biol 1999;467:125-31
  • Amori L, Guidetti P, Pellicciari R, et al. On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. Program No. 338.14. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008. Available from: http://www.abstractsonline.com/plan/ViewAbstract.aspx?sKey=d92d9b35-8184-4771-8eea-547828dcbc17&cKey=077c46c1-e131-4541-b2a2-cd4cac950008
  • Heyes MP, Saito K, Major EO, et al. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Brain 1993;116(Pt 6):1425-50
  • Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281(5380):1191-3
  • Hucke C, MacKenzie CR, Adjogble KD, et al. Nitric oxide-mediated regulation of gamma interferon-induced bacteriostasis: inhibition and degradation of human indoleamine 2,3-dioxygenase. Infect Immun 2004;72(5):2723-30
  • Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6(11):836-48
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21(2):137-48
  • Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 2008;222:206-21
  • Zamanakou M, Germenis AE, Karanikas V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol Lett 2007;111(2):69-75
  • Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003;24:242-8
  • Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets 2007;7(1):31-40
  • Kai S, Goto S, Tahara K, et al. Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth. J Exp Ther Oncol 2003;3(6):336-45
  • Brastianos HC, Vottero E, Patrick BO, et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J Am Chem Soc 2006;128(50):16046-7
  • Gaspari P, Banerjee T, Malachowski WP, et al. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2006;49(2):684-92
  • Carr G, Chung MK, Mauk AG, Andersen RJ. Synthesis of indoleamine 2,3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J Med Chem 2008;51(9):2634-7
  • Kumar S, Malachowski WP, DuHadaway JB, et al. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J Med Chem 2008;51(6):1706-18
  • Kumar S, Jaller D, Patel B, et al. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J Med Chem 2008;51(16):4968-77
  • Hou DY, Muller AJ, Sharma MD, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007;67:792-801
  • Lob S, Konigsrainer A, Schafer R, et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008;111(4):2152-4
  • Miüller N, Schwarz MJ. The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl 2007;(72):269-80
  • Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K. Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 1997;78(4):967-75
  • Andiné P, Lehmann A, Ellrén K, et al. The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection. Neurosci Lett 1988;90(1-2):208-12
  • Wood ER, Bussey TJ, Phillips AG. A glycine antagonist reduces ischemia-induced CA1 cell loss in vivo. Neurosci Lett 1992;145(1):10-4
  • Carpenedo R, Meli E, Peruginelli F, et al. Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. J Neurochem 2002;82(6):1465-71
  • Rassoulpour A, Wu HQ, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 2005;93(3):762-5
  • Wu HQ, Rassoulpour A, Schwarcz R. Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm 2007;114(1):33-41
  • Barry S, Clarke G, Scully P, Dinan TG. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 2008. Published online Jun 18 2008, doi:10.1177/0269881108089583
  • Miller CL, Llenos IC, Dulay JR, Weis S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 2006;1073-1074:25-37
  • Kondziella D, Brenner E, Eyjolfsson EM, Sonnewald U. How do glial-neuronal interactions fit into current neurotransmitter hypotheses of schizophrenia? Neurochem Int 2007;50(2):291-301
  • Enomoto T, Noda Y, Nabeshima T. Phencyclidine and genetic animal models of schizophrenia developed in relation to the glutamate hypothesis. Methods Find Exp Clin Pharmacol 2007;29(4):291-301
  • Manahan-Vaughan D, von Haebler D, Winter C, et al. A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in rats. Hippocampus 2008;18(2):125-34
  • Schmidt WJ, Krähling H, Ruhland M. Antagonism of AP-5-induced sniffing stereotypy links umespirone to atypical antipsychotics. Life Sci 1991;48(6):499-505
  • Gunduz-Bruce H. The acute effects of NMDA antagonism: From the rodent to the human brain. Brain Res Rev 2008. Published online Jul 30 2008, doi:10.1016/j.brainresrev.2008.07.006
  • Erhardt S, Schwieler L, Nilsson L, et al. The kynurenic acid hypothesis of schizophrenia. Physiol Behav 2007;92(1-2):203-9
  • Schell MJ, Molliver ME, Snyder SH. D-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 1995;92(9):3948-52
  • Hashimoto K, Fukushima T, Shimizu E, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003;60(6):572-6
  • Yang CR, Svensson KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: The therapeutic potentials for schizophrenia. Pharmacol Ther 2008;120(3):317-32
  • Gozzi A, Herdon H, Schwarz A, et al. Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology 2008;201(2):273-84
  • Okuno E, Nakamura M, Schwarcz R. Two kynurenine aminotransferases in human brain. Brain Res 1991;542(2):307-12
  • Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 1997;50(3):457-65
  • Han Q, Cai T, Tagle DA, et al. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. Biosci Rep 2008;28(4):205-15
  • Guidetti P, Amori L, Sapko MT, et al. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 2007;102(1):103-11
  • Rossi F, Garavaglia S, Montalbano V, et al. Crystal structure of human kynurenine aminotransferase II, a drug target for the treatment of schizophrenia. J Biol Chem 2008;283(6):3559-66
  • Pellicciari R, Rizzo RC, Costantino G, et al. Modulators of the kynurenine pathway of tryptophan metabolism: synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem 2006;1(5):528-31
  • Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer's disease. Redox Rep 2002;7(4):199-206
  • Hartai Z, Juhász A, Rimanóczy A, et al. Decreased serum and red blood cell kynurenic acid levels in Alzheimer's disease. Neurochem Int 2007;50(2):308-13
  • Ting KK, Brew B, Guillemin G. The involvement of astrocytes and kynurenine pathway in Alzheimer's disease. Neurotox Res 2007;12(4):247-62
  • Guillemin GJ, Meininger V, Brew BJ. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2005;2(3-4):166-76
  • Van Den Bosch L, Robberecht W. Crosstalk between astrocytes and motor neurons: what is the message? Exp Neurol 2008;211(1):1-6
  • Rajda C, Bergquist J, Vécsei L. Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis. J Neural Transm Suppl 2007;(72):323-9
  • Knyihár-Csillik E, Chadaide Z, Mihály A, et al. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol 2006;112(2):127-37
  • Knyihár-Csillik E, Csillik B, Pákáski M, et al. Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Neuroscience 2004;126(4):899-914
  • Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington's disease. Eur J Neurosci 2008;27(11):2803-20
  • Truant R, Atwal RS, Desmond C, et al. Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J 2008;275(17):4252-62
  • Leblhuber F, Walli J, Jellinger K, et al. Activated immune system in patients with Huntington's disease. Clin Chem Lab Med 1998;36(10):747-50
  • Stoy N, Mackay GM, Forrest CM, et al. Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 2005;93(3):611-23
  • Guidetti P, Reddy PH, Tagle DA, Schwarcz R. Early kynurenergic impairment in Huntington's disease and in a transgenic animal model. Neurosci Lett 2000;283(3):233-5
  • Sapko MT, Guidetti P, Yu P, et al. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease. Exp Neurol 2006;197(1):31-40
  • Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol Dis 2004;17(3):455-61
  • Guidetti P, Schwarcz R. 3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade Huntington's disease? Adv Exp Med Biol 2003;527:137-45
  • Guidetti P, Bates GP, Graham RK, et al. Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis 2006;23(1):190-7
  • Giorgini F, Guidetti P, Nguyen Q, et al. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37(5):526-31
  • Giorgini F, Möller T, Kwan W, et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem 2008;283(12):7390-400
  • Pellicciari R, Natalini B, Costantino G, et al. Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. J Med Chem 1994;37(5):647-55
  • Röver S, Cesura AM, Huguenin P, et al. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem 1997;40(26):4378-85
  • Giordani A, Corti L, Cini M, et al. Benzoylalanine analogues as inhibitors of rat brain kynureninase and kynurenine 3-hydroxylase. Adv Exp Med Biol 1996;398:499-505
  • Speciale C, Wu HQ, Cini M, et al. (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol 1996;315(3):263-7
  • Cozzi A, Carpenedo R, Moroni F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 1999;19(7):771-7
  • Samadi P, Grégoire L, Rassoulpour A, et al. Effect of kynurenine 3-hydroxylase inhibition on the dyskinetic and antiparkinsonian responses to levodopa in Parkinsonian monkeys. Mov Disord 2005;20(7):792-802
  • Walsh JL, Todd WP, Carpenter BK, Schwarcz R. 4-halo-3-hydroxyanthranilic acids: potent competitive inhibitors of 3-hydroxy-anthranilic acid oxygenase in vitro. Biochem Pharmacol 1991;42(5):985-90
  • Fornstedt-Wallin B, Lundström J, Fredriksson G, et al. 3-Hydroxyanthranilic acid accumulation following administration of the 3-hydroxyanthranilic acid 3,4-dioxygenase inhibitor NCR-631. Eur J Pharmacol 1999;386(1):15-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.