279
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Virus maturation as a new HIV-1 therapeutic target

, & , PhD
Pages 895-908 | Published online: 17 Jun 2009

Bibliography

  • UNAIDS. Report on the global AIDS epidemic. UNAIDS, 2008
  • Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 2006;368:489-504
  • Chen LF, Hoy J, Lewin SR. Ten years of highly active antiretroviral therapy for HIV infection. Med J Aust 2007;186:146-51
  • Thomson MM, Perez-Alvarez L, Najera R. Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. Lancet Infect Dis 2002;2:461-71
  • Svarovskaia ES, Cheslock SR, Zhang WH, et al. Retroviral mutation rates and reverse transcriptase fidelity. Front Biosci 2003;8:d117-34
  • Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet 2004;5:52-61
  • Najera R, Delgado E, Perez-Alvarez L, Thomson MM. Genetic recombination and its role in the development of the HIV-1 pandemic. AIDS 2002;16(Suppl 4):S3-16
  • Hu WS, Rhodes T, Dang Q, Pathak V. Retroviral recombination: review of genetic analyses. Front Biosci 2003;8:d143-55
  • Emini EA, Fan HY. Immunological and pharmacological approaches to the control of retroviral infections. In: Coffin JM, Hughes SH, Varmus HE, editors, Retroviruses. Cold Spring Harbor Laboratory Press, 1997;637-706
  • Temesgen Z, Cainelli F, Poeschla EM, et al. Approach to salvage antiretroviral therapy in heavily antiretroviral-experienced HIV-positive adults. Lancet Infect Dis 2006;6:496-507
  • Perno CF, Moyle G, Tsoukas C, et al. Overcoming resistance to existing therapies in HIV-infected patients: the role of new antiretroviral drugs. J Med Virol 2008;80:565-76
  • Nunez M, Soriano V. Salvage therapy for HIV infection: when and how. AIDS Patient Care STDS 2000;14:465-76
  • Richman DD. HIV chemotherapy. Nature 2001;410:995-1001
  • Hughes A, Barber T, Nelson M. New treatment options for HIV salvage patients: an overview of second generation PIs, NNRTIs, integrase inhibitors and CCR5 antagonists. J Infect 2008;57:1--10
  • Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services. Available from: http://aidsinfo.nih.gov/ [Accessed 3 November 2008]
  • Este JA, Telenti A. HIV entry inhibitors. Lancet 2007;370:81-8
  • Nair V, Chi G. HIV integrase inhibitors as therapeutic agents in AIDS. Rev Med Virol 2007;17:277-95
  • Adamson CS, Freed EO. Recent progress in antiretrovirals–lessons from resistance. Drug Discov Today 2008;13:424-32
  • Evering TH, Markowitz M. Raltegravir: an integrase inhibitor for HIV-1. Expert Opin Investig Drugs 2008;17:413-22
  • Soriano V, Geretti AM, Perno CF, et al. Optimal use of maraviroc in clinical practice. AIDS 2008;22:2231-40
  • Daar ES. Emerging resistance profiles of newly approved antiretroviral drugs. Top HIV Med 2008;16:110-6
  • Vogt VM. Proteolytic processing and particle maturation. Curr Top Microbiol Immunol 1996;214:95-131
  • Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 1998;251:1-5
  • Gottlinger HG. The HIV-1 assembly machine. AIDS 2001;15(Suppl 5):13-20
  • Demirov DG, Freed EO. Retrovirus budding. Virus Res 2004;106:87-102
  • Morita E, Sundquist WI. Retrovirus budding. Annu Rev Cell Dev Biol 2004;20:395-425
  • Adamson CS, Freed EO. HIV-1 assembly, release and maturation. In: Jeang K-T, editor. Advances in Pharmacolgy, HIV-1: Molecular Biology and Pathogenesis: Viral Mechansims. Elsevier, 2007;347-87
  • Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol 2008;18:203-17
  • Krausslich HG, Schneider H, Zybarth G, et al. Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli. J Virol 1988;62:4393-7
  • Mervis RJ, Ahmad N, Lillehoj EP, et al. The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J Virol 1988;62:3993-4002
  • Erickson-Viitanen S, Manfredi J, Viitanen P, et al. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 1989;5:577-91
  • Tritch RJ, Cheng YE, Yin FH, Erickson-viitanen S. Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J Virol 1991;65:922-30
  • Pettit SC, Moody MD, Wehbie RS, et al. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 1994;68:8017-27
  • Wiegers K, Rutter G, Kottler H, et al. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 1998;72:2846-54
  • Kaplan AH, Zack JA, Knigge M, et al. Partial inhibition of the Human Immunodeficiency Virus Type 1 protease results in abbreant virus assembly and the formation of non-infectious particles. J Virol 1993;67:4050-5
  • Krausslich HG, Facke M, Heuser AM, et al. The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 1995;69:3407-19
  • Accola MA, Hoglund S, Gottlinger HG. A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J Virol 1998;72:2072-8
  • Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R. Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 2002;76:10226-33
  • Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 2003;100:13555-60
  • Zhou J, Yuan X, Dismuke D, et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol 2004;78:922-9
  • Wlodawer A, Erickson JW. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 1993;62:543-85
  • Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998;27:249-84
  • Temesgen Z, Warnke D, Kasten MJ. Current status of antiretroviral therapy. Expert Opin Pharmacother 2006;7:1541-54
  • Mitsuya H, Maeda K, Das D, Ghosh AK. Development of protease inhibitors and the fight with drug-resistant HIV-1 variants. Adv Pharmacol 2008;56:169-97
  • Aiken C, Chen CH. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med 2005;11:31-6
  • Salzwedel K, Martin DE, Sakalian M. Maturation inhibitors: a new therapeutic class targets the virus structure. AIDS Rev 2007;9:162-72
  • Fujioka T, Kashiwada Y, Kilkuskie RE, et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 1994;57:243-7
  • Adamson CS, Waki K, Ablan SD, et al. Impact of human immunodeficiency virus type 1 resistance to protease inhibitors on evolution of resistance to the maturation inhibitor bevirimat (PA-457). J Virol 2009;83:4884-94
  • Dafonseca S, Blommaert A, Coric P, et al. The 3-O-(3',3'-dimethylsuccinyl) derivative of betulinic acid (DSB) inhibits the assembly of virus-like particles in HIV-1 Gag precursor-expressing cells. Antivir Ther 2007;12:1185-203
  • Adamson CS, Ablan SD, Boeras I, et al. In vitro resistance to the Human Immunodeficiency Virus Type 1 maturation inhibitor Pa-457 (Bevirimat). J Virol 2006;80:10957-71
  • Li F, Zoumplis D, Matallana C, et al. Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology 2006;356:217-24
  • Zhou J, Chen CH, Aiken C. Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3',3'-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol 2006;80:12095-101
  • Zhou J, Chen CH, Aiken C. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid. Retrovirology 2004;1:15
  • Zhou J, Huang L, Hachey DL, et al. Inhibition of HIV-1 maturation via drug association with the viral Gag protein in immature HIV-1 particles. J Biol Chem 2005;280:42149-55
  • Sakalian M, Mcmurtrey CP, Deeg FJ, et al. 3-o-(3',3'-dimethysuccinyl) betulinic Acid inhibits maturation of the human immunodeficiency virus type 1 gag precursor assembled in vitro. J Virol 2006;80:5716-22
  • Gamble TR, Yoo S, Vajdos FF, et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 1997;278:849-53
  • Worthylake DK, Wang H, Yoo S, et al. Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr 1999;55:85-92
  • Newman JL, Butcher EW, Patel DT, et al. Flexibility in the P2 domain of the HIV-1 Gag polyprotein. Protein Sci 2004;13:2101-7
  • Morellet N, Druillennec S, Lenoir C, et al. Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 2005;14:375-86
  • Wright ER, Schooler JB, Ding HJ, et al. Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. Embo J 2007;26:2218-26
  • Stoddart CA, Joshi P, Sloan B, et al. Potent activity of the HIV-1 maturation inhibitor bevirimat in SCID-hu Thy/Liv mice. PLoS ONE 2007;2:e1251
  • Wen Z, Stern ST, Martin DE, et al. Structural characterization of anti-HIV drug candidate PA-457 [3-O-(3',3'-dimethylsuccinyl)-betulinic acid] and its acyl glucuronides in rat bile and evaluation of in vitro stability in human and animal liver microsomes and plasma. Drug Metab Dispos 2006;34:1436-42
  • Martin DE, Blum R, Doto J, et al. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin Pharmacokinet 2007;46:589-98
  • Martin DE, Blum R, Wilton J, et al. Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob Agents Chemother 2007;51:3063-6
  • Smith PF, Ogundele A, Forrest A, et al. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-o-(3',3'-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob Agents Chemother 2007;51:3574-81
  • Wen Z, Martin DE, Bullock P, et al. Glucuronidation of anti-HIV drug candidate bevirimat: identification of human UDP-glucuronosyltransferases and species differences. Drug Metab Dispos 2007;35:440-8
  • Bullock P, Larsen D, Press R, et al. The absorption, distribution, metabolism and elimination of bevirimat in rats. Biopharm Drug Dispos 2008;29:396-405
  • Mccallister S, Lalezari J, Richmond G, et al. HIV-1 Gag polymorphisms determine treatment response to bevirimat (PA-457). Presented at the XVII International HIV Drug Resistance Workshop. Sitges, Spain; 10 – 14 June 2008
  • Salzwedel K, Reddick M, Matallana C, et al. Role of Gag polymorphisms in HIV-1 sensitivity to the maturation inhibitor bevirimat. Presented at the XVII International HIV Drug Resistance Workshop. Sitges, Spain; 10 – 14 June 2008
  • Margot NA, Gibbs CS, Miller MD. Phenotyphic susceptibility to bevirimat among HIV-Infected patient isolates without prior exposure to bevirimat. Presented at the 16th Conference on Retroviruses and Opportunistic Infections. Montreal, Canada; 8 - 11 February 2009
  • Salzwedel K, Hamy F, Louvel S, et al. Suceptibility of diverse HIV-1 patient isolates to the maturation inhibitor bevirimat (MPC-4326) is determined by clade-specific polymorphisms in Gag CA-SP1. Presented at the 16th Conference on Retroviruses and Opportunistic Infections. Montreal, Canada; 8 - 11 February 2009;52:2185-88
  • Van Baelen K, Salzwedel K, Rondelez E, et al. HIV-1 Susceptibility to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in Gag SP1. Antimicrob Agents Chemother 2009
  • Yebra G, Holgun A. The maturation inhibitor bevirimat (PA-457) can be active in patients carrying HIV type-1 non-B subtypes and recombinants. Antiviral therapy 2008;13:1083-5
  • Knapp DJHF, Huang S, Harrington R. Stable prevelance of bevirimat-related Gag polymorphisms both before and after HAART exposure. Presented at the 16th conference on retroviruses and opportunistic infections. Montreal, Canada; 8 - 11 February 2009
  • Condra JH, Schleif WA, Blahy OM, et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 1995;374:569-71
  • Martinez-Picado J, Savara AV, Sutton L, D'Aquila RT. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 1999;73:3744-52
  • Malet I, Wirden M, Derache A, et al. Primary genotypic resistance of HIV-1 to the maturation inhibitor PA-457 in protease inhibitor-experienced patients. AIDS 2007;21:871-3
  • Available from: http://www.hiv.lanl.gov
  • Reicin AS, Ohagen A, Yin L, et al. The role of Gag in human immunodeficiency virus type 1 virion morphogenesis and early steps of the viral life cycle. J Virol 1996;70:8645-52
  • von Schwedler UK, Stemmler TL, Klishko VY, et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. Embo J 1998;17:1555-68
  • Fitzon T, Leschonsky B, Bieler K, et al. Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 2000;268:294-307
  • Tang S, Murakami T, Agresta BE, et al. Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J Virol 2001;75:9357-66
  • Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 2002;76:5667-77
  • von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 2003;77:5439-50
  • Ganser-Pornillos BK, von Schwedler UK, Stray KM, et al. Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 2004;78:2545-52
  • Gross I, Hohenberg H, Krausslich HG. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem 1997;249:592-600
  • Gross I, Hohenberg H, Huckhagel C, Krausslich HG. N-Terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J Virol 1998;72:4798-810
  • Ganser BK, Li S, Klishko VY, et al. Assembly and analysis of conical models for the HIV-1 core. Science 1999;283:80-3
  • Li S, Hill CP, Sundquist WI, Finch JT. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 2000;407:409-13
  • Sticht J, Humbert M, Findlow S, et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005;12:671-7
  • Zhang H, Zhao Q, Bhattacharya S, et al. A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 2008;378:565-80
  • Welker R, Hohenberg H, Tessmer U, et al. Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 2000;74:1168-77
  • Briggs JA, Wilk T, Welker R, et al. Structural organization of authentic, mature HIV-1 virions and cores. Embo J 2003;22:1707-15
  • Benjamin J, Ganser-Pornillos BK, Tivol WF, et al. Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. J Mol Biol 2005;346:577-88
  • Briggs JA, Grunewald K, Glass B, et al. The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 2006;14:15-20
  • Swanstrom R, Willis JW. Synthesis, assembly and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE, editors, Retroviruses. Cold Spring Harbor Laboratory Press,1997. pp 263-334
  • Butan C, Winkler DC, Heymann JB, et al. RSV capsid polymorphism correlates with polymerization efficiency and envelope glycoprotein content: implications that nucleation controls morphogenesis. J Mol Biol 2008;376:1168-81
  • Ganser-Pornillos BK, Cheng A, Yeager M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 2007;131:70-9
  • Gamble TR, Vajdos FF, Yoo S, et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 1996;87:1285-94
  • Gitti RK, Lee BM, Walker J, et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 1996;273:231-5
  • Momany C, Kovari LC, Prongay AJ, et al. Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol 1996;3:763-70
  • Berthet-Colominas C, Monaco S, Novelli A, et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. Embo J 1999;18:1124-36
  • Dorfman T, Bukovsky A, Ohagen A, et al. Functional domains of the capsid protein of human immunodeficiency virus type 1. J Virol 1994;68:8180-7
  • Scholz I, Arvidson B, Huseby D, Barklis E. Virus particle core defects caused by mutations in the human immunodeficiency virus capsid N-terminal domain. J Virol 2005;79:1470-9
  • Lanman J, Lam TT, Barnes S, et al. Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 2003;325:759-72
  • Lanman J, Lam TT, Emmett MR, et al. Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 2004;11:676-7
  • Mortuza GB, Haire LF, Stevens A, et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 2004;431:481-5
  • Rose S, Hensley DJ, O'Shannessy J, et al. Characterisation of HIV-1 p24 self-association using affinity chromatography. Proteins 1992;13:112-19
  • Datta SA, Curtis JE, Ratcliff W, et al. Conformation of the HIV-1 Gag protein in solution. J Mol Biol 2007;365:812-24
  • Burniston MT, Cimarelli A, Colgan J, et al. Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 1999;73:8527-40
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004;3:301-17
  • Tang C, Loeliger E, Kinde I, et al. Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 2003;327:1013-20
  • Kelly BN, Kyere S, Kinde I, et al. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J Mol Biol 2007;373:355-66
  • Barklis E, Alfadhli A, Mcquaw C, et al. Characterization of the in vitro HIV-1 capsid assembly pathway. J Mol Biol 2009;387:376-89
  • Ternois F, Sticht J, Duquerroy S, et al. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 2005;12:678-82
  • Bartonova V, Igonet S, Sticht J, et al. Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein. J Biol Chem 2008;283:32024-33
  • Bhattacharya S, Zhang H, Debnath AK, Cowburn D. Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 2008;283:16274-8
  • Abdurahman S, Vegvari A, Youssefi M, et al. Activity of the small modified amino acid alpha-hydroxy glycineamide on in vitro and in vivo human immunodeficiency virus type 1 capsid assembly and infectivity. Antimicrob Agents Chemother 2008;52:3737-44
  • Thys K, De Vos S, De Baere I, et al. Performance of a Gag-PR genotyping assay on a cohort of samples retrieved from highly-treatment experienced HIV-1 patients. Presented at the 6th European HIV Drug Resistance Workshop. Budapest, Hungary; 26 – 28 March 2008
  • Rice WG, Supko JG, Malspeis L, et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 1995;270:1194-7
  • Ott DE, Hewes SM, Alvord WG, et al. Inhibition of friend virus replication by a compound that reacts with the nucleocapsid zinc finger: anti-retroviral effect demonstrated in vivo. Virology 1998;243:283-92
  • Tavassoli A, Lu Q, Gam J, et al. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction. ACS Chem Biol 2008;3:757-64
  • Waheed AA, Freed EO. Peptide inhibitors of HIV-1 egress. ACS Chem Biol 2008;3:745-7
  • Leitner T, Foley B, Hahn B, et al. HIV sequence compendium. LA-UR 06-06-8. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2005
  • Freed EOM. HIVs and their replication. In: Knipe DMH, editor, Fields Virology. Lippincott, Williams & Wilkins, 2007. p. 2107-85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.