392
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Translation initiation: a critical signalling node in cancer

&
Pages 1279-1293 | Published online: 26 Aug 2009

Bibliography

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Jones S, Zhang X, Parsons DW, Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321(5897):1801-6
  • Wood LD, Parsons DW, Jones S, The genomic landscapes of human breast and colorectal cancers. Science 2007;318(5853):1108-13
  • Jones S, Chen WD, Parmigiani G, Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 2008;105(11):4283-8
  • Raught B, Gingras A-C, Sonenberg N. Regulation of ribosome recruitment in eukaryotes. In: Sonenberg N, Hershey JWB, Mathews MB editors, Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000. p. 245-93
  • Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988;334(6180):320-5
  • Jang SK, Davies MV, Kaufman RJ, Wimmer E. Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 1989;63(4):1651-60
  • Hershey JWB, Merrick WC. Initiation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB, editors, Translational control of gene expression. Cold Spring Harbor: Cold Spring Habor Laboratory Press; 2000. p. 33-88
  • Duncan R, Milburn SC, Hershey JW. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J Biol Chem 1987;262(1):380-8
  • Petroulakis E, Mamane Y, Le Bacquer O, mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 2007;96(Suppl):R11-5
  • Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 2009;27(13):2278-87
  • Shahbazian D, Roux PP, Mieulet V, The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006;25(12):2781-91
  • Lawson TG, Lee KA, Maimone MM, Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochemistry 1989;28(11):4729-34
  • Rozen F, Edery I, Meerovitch K, Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 1990;10(3):1134-44
  • Methot N, Song MS, Sonenberg N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 1996;16(10):5328-34
  • Yang HS, Jansen AP, Komar AA, The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003;23(1):26-37
  • Dorrello NV, Peschiaroli A, Guardavaccaro D, S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006;314(5798):467-71
  • Bordeleau ME, Robert F, Gerard B, Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008;118(7):2651-60
  • Cencic R, Carrier M, Galicia-Vazquez G, Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS ONE 2009;4(4):e5223. Published online 29 April 2009, doi:10.1371/journal.pone.0005223
  • Liang Z, Lei T, LuYing Z, YuPing G. The expression of proto-oncogene eIF4E in laryngeal squamous cell carcinoma. Laryngoscope 2003;113(7):1238-43
  • Kerekatte V, Smiley K, Hu B, The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 1995;64(1):27-31
  • Li BD, Liu L, Dawson M, De Benedetti A. Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 1997;79(12):2385-90
  • Li BD, Gruner JS, Abreo F, Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 2002;235(5):732-8; discussion 8-9
  • Nathan CO, Liu L, Li BD, Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 1997;15(5):579-84
  • Sorrells DL Jr, Ghali GE, De Benedetti A, Progressive amplification and overexpression of the eukaryotic initiation factor 4E gene in different zones of head and neck cancers. J Oral Maxillofac Surg 1999;57(3):294-9
  • Haydon MS, Googe JD, Sorrells DS, Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer 2000;88(12):2803-10
  • Nathan CO, Franklin S, Abreo FW, Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol 1999;17(9):2909-14
  • Franklin S, Pho T, Abreo FW, Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers. Arch Otolaryngol Head Neck Surg 1999;125(2):177-82
  • Nathan CO, Sanders K, Abreo FW, Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res 2000;60(13):3599-604
  • Seki N, Takasu T, Mandai K, Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res 2002;8(10):3046-53
  • Wang S, Lloyd RV, Hutzler MJ, Expression of eukaryotic translation initiation factors 4E and 2α correlates with the progression of thyroid carcinoma. Thyroid 2001;11(12):1101-7
  • Rosenwald IB, Hutzler MJ, Wang S, Expression of eukaryotic translation initiation factors 4E and 2α is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer 2001;92(8):2164-71
  • Wang S, Rosenwald IB, Hutzler MJ, Expression of the eukaryotic translation initiation factors 4E and 2α in non-Hodgkin's lymphomas. Am J Pathol 1999;155(1):247-55
  • Rosenwald IB, Chen JJ, Wang S, Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 1999;18(15):2507-17
  • Shuda M, Kondoh N, Tanaka K, Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 2000;20(4):2489-94
  • Martin ME, Perez MI, Redondo C, 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 2000;32(6):633-42
  • Coleman LJ, Peter MB, Teall TJ, Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009;100(9):1393-9
  • Armengol G, Rojo F, Castellvi J, 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 2007;67(16):7551-5
  • Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990;345(6275):544-7
  • Fukuchi-Shimogori T, Ishii I, Kashiwagi K, Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 1997;57(22):5041-4
  • Wendel HG, De Stanchina E, Fridman JS, Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004;428(6980):332-7
  • Ruggero D, Montanaro L, Ma L, The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004;10(5):484-6
  • Avdulov S, Li S, Michalek V, Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004;5(6):553-63
  • Polunovsky VA, Rosenwald IB, Tan AT, Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 1996;16(11):6573-81
  • Li S, Takasu T, Perlman DM, Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 2003;278(5):3015-22
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441(7092):424-30
  • Lazaris-Karatzas A, Smith MR, Frederickson RM, Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 1992;6(9):1631-42
  • Polunovsky VA, Gingras AC, Sonenberg N, Translational control of the antiapoptotic function of Ras. J Biol Chem 2000;275(32):24776-80
  • Donovan S, See W, Bonifas J, Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2002;2(6):507-14
  • Johannessen CM, Johnson BW, Williams SM, TORC1 is essential for NF1-associated malignancies. Curr Biol 2008;18(1):56-62
  • Johannessen CM, Reczek EE, James MF, The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 2005;102(24):8573-8
  • Ballif BA, Roux PP, Gerber SA, Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 2005;102(3):667-72
  • Ma L, Chen Z, Erdjument-Bromage H, Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121(2):179-93
  • Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995;42(4):459-67
  • Schmidt EV. The role of c-myc in cellular growth control. Oncogene 1999;18(19):2988-96
  • Schmidt EV. The role of c-myc in regulation of translation initiation. Oncogene 2004;23(18):3217-21
  • Jones RM, Branda J, Johnston KA, An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 1996;16(9):4754-64
  • Lin CJ, Cencic R, Mills JR, c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 2008;68(13):5326-34
  • Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 2008;9(10):810-5
  • Graff JR, Zimmer SG. Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 2003;20(3):265-73
  • Pyronnet S. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 2000;60(8):1237-43
  • Minich WB, Balasta ML, Goss DJ, Rhoads RE. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 1994;91(16):7668-72
  • Bu X, Haas DW, Hagedorn CH. Novel phosphorylation sites of eukaryotic initiation factor-4F and evidence that phosphorylation stabilizes interactions of the p25 and p220 subunits. J Biol Chem 1993;268(7):4975-8
  • Joshi-Barve S, Rychlik W, Rhoads RE. Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48 S initiation complex. J Biol Chem 1990;265(5):2979-83
  • Saghir AN, Tuxworth WJ Jr, Hagedorn CH, McDermott PJ. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates. Biochem J 2001;356(Pt 2):557-66
  • Wendel HG, Silva RL, Malina A, Dissecting eIF4E action in tumorigenesis. Genes Dev 2007;21(24):3232-7
  • Topisirovic I, Ruiz-Gutierrez M, Borden KL. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2004;64(23):8639-42
  • Fan S, Ramalingam SS, Kauh J, Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 2009;8(15):20-6
  • Massague J. TGFβ in Cancer. Cell 2008;134(2):215-30
  • Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res 2009;19(2):156-72
  • Bakin AV, Tomlinson AK, Bhowmick NA, Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000;275(47):36803-10
  • Lamouille S, Derynck R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007;178(3):437-51
  • Das F, Ghosh-Choudhury N, Mahimainathan L, Raptor-rictor axis in TGFβ-induced protein synthesis. Cell Signal 2008;20(2):409-23
  • Jechlinger M, Grunert S, Tamir IH, Expression profiling of epithelial plasticity in tumor progression. Oncogene 2003;22(46):7155-69
  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781-810
  • Inoki K, Ouyang H, Zhu T, TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006;126(5):955-68
  • Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin. Cell Signal 2008;20(10):1697-704
  • He TC, Sparks AB, Rago C, Identification of c-MYC as a target of the APC pathway. Science 1998;281(5382):1509-12
  • Mak BC, Takemaru K, Kenerson HL, The tuberin-hamartin complex negatively regulates β-catenin signaling activity. J Biol Chem 2003;278(8):5947-51
  • Karni R, Gus Y, Dor Y, Active Src elevates the expression of β-catenin by enhancement of cap-dependent translation. Mol Cell Biol 2005;25(12):5031-9
  • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284(5415):770-6
  • Mungamuri SK, Yang X, Thor AD, Somasundaram K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 2006;66(9):4715-24
  • Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol 2003;77(12):7106-12
  • Chan SM, Weng AP, Tibshirani R, Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 2007;110(1):278-86
  • Androutsellis-Theotokis A, Leker RR, Soldner F, Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006;442(7104):823-6
  • Graziani I, Eliasz S, De Marco MA, Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res 2008;68(23):9678-85
  • Wang Z, Banerjee S, Li Y, Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-κB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006;66(5):2778-84
  • Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002;109(Suppl):S81-96
  • Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009;8(1):33-40
  • Ozes ON, Mayo LD, Gustin JA, NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401(6748):82-5
  • Yang N, Huang J, Greshock J, Transcriptional regulation of PIK3CA oncogene by NF-κB in ovarian cancer microenvironment. PLoS ONE 2008;3(3):e1758. Published online 21 February 2006, doi:10.1186/1471-2121-7-9
  • Dan HC, Adli M, Baldwin AS. Regulation of mammalian target of rapamycin activity in PTEN-inactive prostate cancer cells by IκB kinase α. Cancer Res 2007;67(13):6263-9
  • Dan HC, Cooper MJ, Cogswell PC, Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes Dev 2008;22(11):1490-500
  • Ghosh S, Tergaonkar V, Rothlin CV, Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell 2006;10(3):215-26
  • Minhajuddin M, Bijli KM, Fazal F, Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem 2009;284(7):4052-61
  • Hengartner MO. The biochemistry of apoptosis. Nature 2000;407(6805):770-6
  • Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 1998;10(2):262-7
  • Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88(4):435-7
  • Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med 2001;5(3):221-39
  • Bjornsti MA, Houghton PJ. Lost in translation: dysregulation of cap-dependent translation and cancer. Cancer Cell 2004;5(6):519-23
  • Wendel HG, Lowe SW. Reversing drug resistance in vivo. Cell Cycle 2004;3(7):847-9
  • Wendel HG, Malina A, Zhao Z, Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 2006;66(15):7639-46
  • Mills JR, Hippo Y, Robert F, mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci USA 2008;105(31):10853-8
  • Mavrakis KJ, Zhu H, Silva RL, Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008;22(16):2178-88
  • Wei G, Twomey D, Lamb J, Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006;10(4):331-42
  • Hahnel PS, Thaler S, Antunes E, Targeting AKT signaling sensitizes cancer to cellular immunotherapy. Cancer Res 2008;68(10):3899-906
  • Kobayashi S, Werneburg NW, Bronk SF, Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 2005;128(7):2054-65
  • Wei LH, Kuo ML, Chen CA, The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene 2001;20(41):5799-809
  • Jee SH, Chiu HC, Tsai TF, The phosphotidyl inositol 3-kinase/ Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells. J Invest Dermatol 2002;119(5):1121-7
  • Meng F, Yamagiwa Y, Ueno Y, Patel T. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 2006;44(6):1055-65
  • Tam KH, Yang ZF, Lau CK, Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett 2009;273(2):201-9
  • Kojima K, Shimanuki M, Shikami M, The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leukemia 2008;22(9):1728-36
  • Wangpaichitr M, Wu C, You M, Inhibition of mTOR restores cisplatin sensitivity through down-regulation of growth and anti-apoptotic proteins. Eur J Pharmacol 2008;591(1-3):124-7
  • Graff JR, Konicek BW, Vincent TM, Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 2007;117(9):2638-48
  • Li S, Perlman DM, Peterson MS, Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 2004;279(20):21312-7
  • Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev 2008;7(12):979-87
  • Moumen A, Patane S, Porras A, Met acts on Mdm2 via mTOR to signal cell survival during development. Development 2007;134(7):1443-51
  • Li M, Zhang Z, Hill DL, Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 2007;67(5):1988-96
  • Culjkovic B, Topisirovic I, Skrabanek L, eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 2006;175(3):415-26
  • Phillips A, Blaydes JP. MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 2008;27(11):1645-9
  • Horton LE, Bushell M, Barth-Baus D, p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002;21(34):5325-34
  • Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003;22(53):8543-67
  • LaCasse EC, Mahoney DJ, Cheung HH, IAP-targeted therapies for cancer. Oncogene 2008;27(48):6252-75
  • Fulda S. Targeting inhibitor of apoptosis proteins (IAPs) for cancer therapy. Anticancer Agents Med Chem 2008;8(5):533-9
  • Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009;124(3):511-5
  • Dong K, Wang R, Wang X, Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 2009;113(3):443-56
  • Meng F, Yamagiwa Y, Taffetani S, IL-6 activates serum and glucocorticoid kinase via p38α mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol 2005;289(4):C971-81
  • Yamagiwa Y, Marienfeld C, Meng F, Translational regulation of X-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res 2004;64(4):1293-8
  • Mamane Y, Petroulakis E, Martineau Y, Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2007;2:e242. Published online 21 February, 2007, doi:10.1371/journal.pone.0000242
  • Vaira V, Lee CW, Goel HL, Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 2007;26(19):2678-84
  • Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 2008;283(36):25057-73
  • Roca H, Varsos ZS, Mizutani K, Pienta KJ. CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 2008;4(7):969-71
  • Cramer K, Nieborowska-Skorska M, Koptyra M, BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 2008;68(17):6884-8
  • Nimmanapalli R, Bali P, O'Bryan E, Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res 2003;63(22):7950-8
  • Ly C, Arechiga AF, Melo JV, Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 2003;63(18):5716-22
  • Prabhu S, Saadat D, Zhang M, A novel mechanism for Bcr-Abl action: Bcr-Abl-mediated induction of the eIF4F translation initiation complex and mRNA translation. Oncogene 2007;26(8):1188-200
  • Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009;9(3):153-66
  • Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 2007;98(5):629-35
  • De Benedetti A, Joshi-Barve S, Rinker-Schaeffer C, Rhoads RE. Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol Cell Biol 1991;11(11):5435-45
  • Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000;103(2):253-62
  • Fingar DC, Richardson CJ, Tee AR, mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004;24(1):200-16
  • Rosenwald IB, Kaspar R, Rousseau D, Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995;270(36):21176-80
  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993;13(12):7358-63
  • Soni A, Akcakanat A, Singh G, eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 2008;7(7):1782-8
  • Oridate N, Kim HJ, Xu X, Lotan R. Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or cyclin D1 alone or combined with cisplatin. Cancer Biol Ther 2005;4(3):318-23
  • Gera JF, Mellinghoff IK, Shi Y, AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004;279(4):2737-46
  • Meng Q, Xia C, Fang J, Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 2006;18(12):2262-71
  • Albers MW, Williams RT, Brown EJ, FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem 1993;268(30):22825-9
  • Hashemolhosseini S, Nagamine Y, Morley SJ, Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 1998;273(23):14424-9
  • Takuwa N, Fukui Y, Takuwa Y. Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 1999;19(2):1346-58
  • He YY, Council SE, Feng L, Chignell CF. UVA-induced cell cycle progression is mediated by a disintegrin and metalloprotease/epidermal growth factor receptor/AKT/Cyclin D1 pathways in keratinocytes. Cancer Res 2008;68(10):3752-8
  • Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene 2008;27(8):1106-13
  • Shi Y, Sharma A, Wu H, Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 2005;280(12):10964-73
  • Jo OD, Martin J, Bernath A, Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008;283(34):23274-87
  • Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 2006;66(15):7783-92
  • Breslin EM, White PC, Shore AM, LY294002 and rapamycin co-operate to inhibit T-cell proliferation. Br J Pharmacol 2005;144(6):791-800
  • Balcazar N, Sathyamurthy A, Elghazi L, mTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 2009;284(12):7832-42
  • Hleb M, Murphy S, Wagner EF, Evidence for cyclin D3 as a novel target of rapamycin in human T lymphocytes. J Biol Chem 2004;279(30):31948-55
  • Hipp S, Ringshausen I, Oelsner M, Inhibition of the mammalian target of rapamycin and the induction of cell cycle arrest in mantle cell lymphoma cells. Haematologica 2005;90(10):1433-4
  • Garcia-Morales P, Hernando E, Carrasco-Garcia E, Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells. Mol Cancer Ther 2006;5(9):2172-81
  • Pallet N, Thervet E, Le Corre D, Rapamycin inhibits human renal epithelial cell proliferation: effect on cyclin D3 mRNA expression and stability. Kidney Int 2005;67(6):2422-33
  • Zacharek SJ, Xiong Y, Shumway SD. Negative regulation of TSC1–TSC2 by mammalian D-type cyclins. Cancer Res 2005;65(24):11354-60
  • Jiang H, Coleman J, Miskimins R, Miskimins WK. Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int 2003;3(1):2
  • Huen MS, Chen J. The DNA damage response pathways: at the crossroad of protein modifications. Cell Res 2008;18(1):8-16
  • Shimada M, Nakanishi M. DNA damage checkpoints and cancer. J Mol Histol 2006;37(5-7):253-60
  • Tee AR, Proud CG. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene 2000;19(26):3021-31
  • Le Bouffant R, Mulner-Lorillon O, Morales J, Chromium(III) triggers the DNA-damaged checkpoint of the cell cycle and induces a functional increase of 4E-BP. Chem Res Toxicol 2008;21(2):542-9
  • Le Bouffant R, Cormier P, Mulner-Lorillon O, Belle R. Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP. J Cell Biochem 2006;99(1):126-32
  • Abid MR, Li Y, Anthony C, De Benedetti A. Translational regulation of ribonucleotide reductase by eukaryotic initiation factor 4E links protein synthesis to the control of DNA replication. J Biol Chem 1999;274(50):35991-8
  • Li Y, DeFatta R, Anthony C, A translationally regulated Tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed. Oncogene 2001;20(6):726-38
  • Sunavala-Dossabhoy G, Balakrishnan SK, Sen S, The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks. BMC Mol Biol 2005;6:19. published online 12 September 2005, doi:10.1186/1471-2199-6-19
  • Sen SP, De Benedetti A. TLK1B promotes repair of UV-damaged DNA through chromatin remodeling by Asf1. BMC Mol Biol 2006;7:37, 20 October 2006 doi:10.1186/1471-2199-7-37
  • Byrnes KW, de Benedetti A, Holm NT, Correlation of TLK1B in elevation and recurrence in doxorubicin-treated breast cancer patients with high eIF4E overexpression. J Am Coll Surg 2007;204(5):925-33; discussion 33-4
  • Wolfort R, de Benedetti A, Nuthalapaty S, Up-regulation of TLK1B by eIF4E overexpression predicts cancer recurrence in irradiated patients with breast cancer. Surgery 2006;140(2):161-9
  • Stemmler MP. Cadherins in development and cancer. Mol Biosyst 2008;4(8):835-50
  • Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005;17(5):499-508
  • Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 1999;274(27):19347-51
  • Shao J, Evers BM, Sheng H. Roles of phosphatidylinositol 3′-kinase and mammalian target of rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res 2004;64(1):229-35
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69(1):11-25
  • Chung J, Mercurio AM. Contributions of the α6 integrins to breast carcinoma survival and progression. Mol Cell 2004;17(2):203-9
  • Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 2008;6(3-4):155-63
  • Chung J, Kim TH. Integrin-dependent translational control: Implication in cancer progression. Microsc Res Tech 2008;71(5):380-6
  • Malik RK, Parsons JT. Integrin-dependent activation of the p70 ribosomal S6 kinase signaling pathway. J Biol Chem 1996;271(47):29785-91
  • Gan B, Yoo Y, Guan JL. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth. J Biol Chem 2006;281(49):37321-9
  • Persad S, Attwell S, Gray V, Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 2001;276(29):27462-9
  • McDonald PC, Oloumi A, Mills J, Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res 2008;68(6):1618-24
  • Bode W, Grams F, Reinemer P, The metzincin-superfamily of zinc-peptidases. Adv Exp Med Biol 1996;389:1-11
  • Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med 2008;29(5):290-308
  • Huang SC, Sheu BC, Chang WC, Extracellular matrix proteases – cytokine regulation role in cancer and pregnancy. Front Biosci 2009;14:1571-88
  • Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 2008;8(12):929-41
  • Bond JS, Matters GL, Banerjee S, Dusheck RE. Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract infections and cancer. FEBS Lett 2005;579(15):3317-22
  • Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2(10):795-803
  • Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 2006;12(17):5018-22
  • Kevil CG, De Benedetti A, Payne DK, Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 1996;65(6):785-90
  • Jiang Y, Muschel RJ. Regulation of matrix metalloproteinase-9 (MMP-9) by translational efficiency in murine prostate carcinoma cells. Cancer Res 2002;62(6):1910-4
  • Segrelles C, Ruiz S, Santos M, Akt mediates an angiogenic switch in transformed keratinocytes. Carcinogenesis 2004;25(7):1137-47
  • Zundel W, Schindler C, Haas-Kogan D, Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000;14(4):391-6
  • Zheng X, Jiang F, Katakowski M, ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther 2009;8(11):1045-54
  • Wang SE, Xiang B, Guix M, Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 2008;28(18):5605-20
  • Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25(4):581-611
  • Wang J, Lu Y, Koch AE, CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res 2008;68(24):10367-76
  • Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol 2001;22(2):83-7
  • Levy JA. The unexpected pleiotropic activities of RANTES. J Immunol 2009;182(7):3945-6
  • Murooka TT, Rahbar R, Platanias LC, Fish EN. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood 2008;111(10):4892-901
  • Huang CY, Fong YC, Lee CY, CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways. Biochem Pharmacol 2009;77(5):794-803
  • Chuang JY, Yang WH, Chen HT, CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol 2009;220:418-26
  • Graff JR, Konicek BW, Lynch RL, eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 2009;69(9):3866-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.