394
Views
78
CrossRef citations to date
0
Altmetric
Review

Targeting the PTPome in human disease

, &
Pages 157-177 | Published online: 27 Jan 2006

Bibliography

  • HUNTER T, SEFTON BM: Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA (1980) 77:1311-1315.
  • HUNTER T: The role of tyrosine phosphorylation in cell growth and disease. Harvey Lect. (1998) 94:81-119.
  • ALONSO A, SASIN J, OSTERMAN A et al.: The protein tyrosine phosphatases in the human genome. Cell (2004) 117:699-711.
  • BOTTINI N, BOTTINI E, GLORIA-BOTTINI F, MUSTELIN T: LMPTP and human disease: in search of biochemical mechanisms. Archivum Immunologiae et Therapiae Experimentalis (AITE) (2002) 50:95-104.
  • CHOW K, NG D, STOKES R, JOHNSON P: Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiol. Lett. (1994) 124:203-207.
  • KENNELLY PJ: Archaeal protein kinases and protein phosphatases – Insights from genomics and biochemistry. Biochem. J. (2003) 370:373-389.
  • COZZONE AJ, GRANGEASSE C, DOUBLET P, DUCLOS B: Protein phosphorylation on tyrosine in bacteria. Arch. Microbiol. (2004) 181:171-181.
  • WALTON KM, DIXON JE: Protein tyrosine phosphatases. Ann. Rev. Biochem. (1993) 62:101-120.
  • TONKS NK, NEEL BG: From form to function: Signaling by PTPs. Cell (1996) 87:365-368.
  • MUSTELIN T, VANG T, BOTTINI N: Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. (2005) 5:43-57.
  • STOKER AW: Protein tyrosine phosphatases and signaling. J. Endocrinol. (2005) 185:19-33.
  • KAPPERT K, PETERS KG, BOHMER FD, ÖSTMAN A: Tyrosine phosphatases in vessel wall signaling. Cardiovasc. Res. (2005) 65:587-598.
  • REBAY I, SILVER SJ, TOOTLE TL: New vision from Eyes absent: transcription factors as enzymes. Trends Genet. (2005) 21:163-171.
  • WONG W, SCOTT JD: AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell. Biol. (2004) 5:959-970.
  • COHEN PT: Protein phosphatase 1 – targeted in many directions. J. Cell. Sci. (2002) 115:241-256.
  • CEULEMANS H, BOLLEN M: Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. (2004) 84:1-39.
  • FENG GS: Shp-2 tyrosine phosphatase: Signaling one cell or many. Exp. Cell Res. (1999) 253:47-54
  • MUSTELIN T, COGGESHALL KM, ALTMAN A: Rapid activation of the T cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA (1989) 86:6302-6306.
  • BOTTINI N, STEFANINI L, WILLIAMS S et al.: Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J. Biol. Chem. (2002) 277:24220-24224.
  • COTE JF, CHAREST A, WAGNER J, TREMBLAY ML: Combination of gene targeting and substrate trapping to identify substrates of PTPs using PTP-PEST as a model. Biochemistry (1998) 37:13128-13137.
  • SAXTON TM, HENKEMEYER M, GASCA S et al.: Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. (1997) 16:2352-2364.
  • GRONDA M, ARAB S, IAFRATE B, SUZUKI H, ZANKE B: Hematopoietic PTP suppresses extracellular stimulus-regulated kinase activation. Mol. Cell. Biol. (2001) 21:6851-6858.
  • YOU-TEN KE, MUISE ES, ITIE A et al.: Impaired bone marrow microenvironment and immune function in T cell PTP-deficient mice. J. Exp. Med. (1997) 186:683-693.
  • BYTH KF, CONROY LA, HOWLETT S et al.: CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development in the selection of CD4+CD8+ thymocytes and B-cell maturation. J. Exp. Med. (1996) 183:1707-1718.
  • WHARRAM BL, GOYAL M, GILLESPIE PJ et al.: Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. Clin. Invest. (2000) 106:1281-1290.
  • UETANI N, KATO K, OGURA H et al.: Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J. (2000) 19:2775-2785.
  • DI CRISTOFANO A, PESCE B, CORDON-CARDO C, PANDOLFI PP: Pten is essential for embryonic development and tumour suppression. Nat. Genet. (1998) 19:348-355.
  • KOOP EA, GEBBINK MFBG, SWEENEY TE et al.: Impaired flow-induced dilation in mesenteric resistance arteries from receptor protein tyrosine phosphatase-µ-deficient mice. Am. J. Physiol. Heart Circ. Physiol. (2005) 288:H1218-H1223.
  • MANNING G, WHYTE DB, MARTINEZ R, HUNTER T, SUDARSANAM S: The protein kinase complement of the human genome. Science (2002) 298:1912-1934.
  • CHARBONNEAU H, TONKS NK, KUMAR S et al.: Human placenta protein-tyrosine phosphatase: Amino-acid sequence and relationship to a family of receptor-like proteins. Proc. Natl. Acad. Sci. USA (1989) 86:5252-5256.
  • MAEHAMA T, DIXON JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. (1998) 273:13375-13378.
  • WISHART MJ, DIXON JE: PTEN and myotubularins phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. (2002) 12:579-585.
  • ALONSO A, SASIN J, BURKHALTER S et al.: The minimal essential core of a cysteine-based PTP revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J. Biol. Chem. (2004) 279:35768-35774.
  • BORDO D, BORK P: The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. (2002) 3:741-746.
  • ALONSO A, ROJAS A, GODZIK A, MUSTELIN T: The dual-specific PTP family. Top. Curr. Genet. (2003) 5:333-358.
  • VINCENT C, DUCLOS B, GRANGEASSE C et al.: Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in Gram-negative bacteria. J. Mol. Biol. (2000) 304:311-321.
  • MUSUMECI L, TAUTZ L, PEREGO M, MUSTELIN, T, BOTTINI N: Characterization of the YfkJ protein tyrosine phosphatase of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. (2005) (In Press).
  • DORFMAN K, CARRASCO D, GRUDA M, RYAN C, LIRA SA, BRAVO R: Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene (1996) 13:925-931.
  • HASEGAWA K, MARTIN F, HUANG G, TUMAS D, DIEHL L, CHAN AC: PEST domain-enriched tyrosine phosphatase (PEP) regulation ofeffector/memory T cells. Science (2004) 303:685-689.
  • ANDERSEN JN, JANSEN PG, ECHWALD SM et al.: A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J. (2004) 18:8-13.
  • ZANKE B, SUZUKI H, KISIHARA K et al.: Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur. J. Immunol. (1992) 22:235-239.
  • ZANKE B, SQUIRE J, GRIESSER H et al.: A hematopoietic PTP (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia (1994) 8:236-244.
  • MENA-DURAN AV, TOGO SH, BAZHENOVA L et al.: SHP1 expression in bone marrow biopsies of myelodysplastic syndrome patients: a new prognostic marker. Br. J. Haematol. (2005) (In Press).
  • ZHANG Q, WANG HY, MARZEC M, RAGHUNATH PN, NAGASAWA T, WASIK MA: STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. USA (2005) 102:6948-6953.
  • LI DM, SUN H: TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. (1997) 57:2124-2129
  • CANTLEY LC, NEEL BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA (1999) 96:4240-4245.
  • SIMPSON L, PARSONS R: PTEN: life as a tumor suppressor. Exp. Cell. Res. (2001) 264:29-41.
  • GULDBERG P, THOR STRATEN P, BIRCK A, AHRENKIEL V, KIRKIN AF, ZEUTHEN J: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. (1997) 57:3660-3663
  • TASHIRO H, BLAZES MS, WU R et al.: Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. (1997) 57:3935-3940.
  • PERREN A, WENG LP, BOAG AH et al.: Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am. J. Pathol. (1999) 155:1253-1260.
  • REIFENBERGER J, WOLTER M, BOSTROM J et al.: Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas. Virch. Arch. (2000) 436:487-493.
  • BRUNI P, BOCCIA A, BALDASSARRE G et al.: PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene (2000) 19:3146-3155.
  • TENG DH, HU R, LIN H et al.: MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. (1997) 57:5221-5225.
  • GRONBAEK K, ZEUTHEN J, GULDBERG P, RALFKIAER E, HOU-JENSEN K: Alterations of the MMAC1/PTEN gene in lymphoid malignancies. Blood (1998) 91:4388-4390.
  • RUIVENKAMP CA, VAN WEZEL T, ZANON C et al.: Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat. Genet. (2002) 31:295-300.
  • MOTIWALA T, GHOSHAL K, DAS A et al.: Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene (2003) 22:6319-6331.
  • MORI Y, YIN J, SATO F et al.: Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigenetic scanning. Cancer Res. (2004) 64:2434-2438.
  • WANG Z, SHEN D, PARSONS DW et al.: Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science (2004) 304:1164-1166.
  • SAHA S, BARDELLI A, BUCKHAULTS P et al.: A phosphatase associated with metastasis of colorectal cancer. Science (2001) 294:1343-1346.
  • LODA M, CAPODIECI P, MISHRA R et al.: Expression of mitogen-activated protein kinase phosphatase-1 in early phases of human epithelial carcinogenesis. Am. J. Pathol. (1996) 149:1553-1564.
  • ARDINI E, AGRESTI R, TAGLIABUE E et al.: Expression of protein tyrosine alpha (RPTPα) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene (2000) 19:4979-4987.
  • WANG J, STUCKEY JA, WISHART MJ, DIXON JE: A unique carbohydrate binding domain targets the Lafora disease phosphatase to glycogen. J. Biol. Chem. (2002) 277:2377-2380.
  • MINASSIAN BA, LEE JR, HERBRICK JA et al.: Mutations in a gene encoding a novel PTP cause progressive myoclonus epilepsy. Nat. Genet. (1998) 20:171-174.
  • LAPORTE J, HU LJ, KRETZ C et al.: A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. (1996) 13:175-182.
  • BOLINO A, MUGLIA M, CONFORTI FL et al.: Charcot-Marie-Tooth Type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. (2000) 25:17-19.
  • AZZEDINE H, BOLINO A, TAIEB T et al.: Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. (2003) 72:1141-1153.
  • LIAW D, MARSH DJ, LI J et al.: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. (1997) 16:64-67
  • MARSH DJ, DAHIA PL, ZHENG Z et al.: Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat. Genet. (1997) 16:333-334.
  • ENG C: Genetics of Cowden syndrome: through the looking glass of oncology. Int. J. Oncol. (1998) 12:701-710.
  • TARTAGLIA M, MEHLER EL, GOLDBERG R et al.: Mutations in PTPN11, encoding the PTP SHP-2, cause Noonan syndrome. Nat. Genet. (2001) 29:465-468.
  • ELCHEBLY M, PAYETTE P, MICHALISZYN E et al.: Increased insulin sensitivity and obesity resistance in mice lacking the PTP-1B gene. Science (1999) 283:1544-1548.
  • PALMER ND, BENTO JL, MYCHALECKYJ JC et al.: Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes (2004) 53:3013-3019.
  • NAKAGAWA Y, AOKI N, AOYAMA K et al.: Receptor-type protein tyrosine phosphatase epsilon (PTPεM) is a negative regulator of insulin signaling in primary hepatocytes and liver. Zoolog. Sci. (2005) 22:169-75.
  • ZHANG EE, CHAPEAU E, HAGIHARA K, FENG GS: Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. USA (2004) 101:16064-16068.
  • KOWALCZYK AP, NAVARRO P, DEJANA E et al.: VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J. Cell Science (1998) 111:3045-3057.
  • SAP J, JIANG YP, FRIEDLANDER D, GRUMET M, SCHLESSINGER J: Receptor tyrosine phosphatase R-PTPκ mediates homophilic binding. Mol. Cell. Biol. (1994) 14:1-9.
  • SUI XF, KISER TD, HYUN SW et al.: Receptor protein tyrosine phosphatase micro regulates the paracellular pathway in human lung microvascular endothelia. Am. J. Pathol. (2005) 166:1247-1258.
  • HOLSINGER LJ, WARD K, DUFFIELD B, ZACHWIEJA J, JALLAL B: The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120ctn. Oncogene (2002) 21:7067-7076.
  • BUENO OF, DE WINDT LJ, LIM HW et al.: The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ. Res. (2001) 88:88-96.
  • SMITH M, FILIPEK PA, WU C et al.: Analysis of a 1-megabase deletion in 15q22-q23 in an autistic patient: identification of candidate genes for autism and of homologous DNA segments in 15q22-q23 and 15q11-q13. Am. J. Med. Genet. (Neuropsychiatric Genetics) (2000) 96:765-770.
  • HUYNH H, BOTTINI N, WILLIAMS S et al.: Control of vesicle fusion by a tyrosine phosphatase. Nat. Cell. Biol. (2004) 6:831-839.
  • TSUI HW, SIMINOVITCH KA, DE SOUZA L, TSUI FWL: Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. (1993) 4:124-129.
  • SHULTZ LD, GREEN MC: Motheaten, an immunodeficient mutant of the mouse. J. Immunol. (1976) 116:936-943.
  • MATSUSHITA M, TSUCHIYA N, OKA T, YAMANE A, TOKUNAGA K: New variations of human SHP-1. Immunogenetics (1999) 49:577-579.
  • BOTTINI N, MUSUMECI L, ALONSO A et al.: A functional variant of lymphoid tyrosine phosphatase is associated with Type 1 diabetes. Nat. Genet. (2004) 36:337-338.
  • SMYTH D, COOPER JD, COLLINS JE et al.: Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with Type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes (2004) 53:3020-3023.
  • LADNER MB, BOTTINI N, VALDES AM, NOBLE JA: Association of the single-nucleotide polymorphism C1858T of the PTPN22 gene with Type 1 diabetes. Hum. Immunol. (2005) 66:60-64.
  • ZHERNAKOVA A, EERLIGH P, WIJMENGA C, BARRERA P, ROEP BO, KOELEMAN BP: Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun. (2005) (In Press).
  • QU H, TESSIER MC, HUDSON TJ, POLYCHRONAKOS C: Confirmation of the association of the R620W polymorphism in the protein tyrosine phosphatase PTPN22 with Type 1 diabetes in a family based study. J. Med. Genet. (2005) 42:266-270.
  • ZHENG W, SHE JX: Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and Type 1 diabetes. Diabetes (2005) 54:906-908.
  • BEGOVICH AB, CARLTON VE, HONIGBERG LA et al.: A missense single-nucleotide polymorphism in a gene encoding a PTP (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. (2004) 75:330-337.
  • LEE AT, LI W, LIEW A et al.: The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun. (2005) 6:129-133.
  • OROZCO G, SANCHEZ E, GONZALEZ-GAY MA et al.: Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. (2005) 52:219-224.
  • VIKEN MK, AMUNDSEN SS, KVIEN TK et al.: Association analysis of the 1858C > T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun. (2005) 6:271-273.
  • KYOGOKU C, LANGEFELD CD, ORTMANN WA et al.: Genetic association of the R620W polymorphism of PTP PTPN22 with human SLE. Am. J. Hum. Genet. (2004) 75:504-507.
  • VELAGA MR, WILSON V, JENNINGS CE et al.: The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab. (2004) 89:5862-5865.
  • SKORKA A, BEDNARCZUK T, BAR-ANDZIAK E, NAUMAN J, PLOSKI R: Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin. Endocrinol. (2005) 62:679-682.
  • CRISWELL LA, PFEIFFER KA, LUM RF et al.: Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet. (2005) 76:561-571.
  • BEGOVICH AB, CAILLIER SJ, ALEXANDER HC et al.: The R620W polymorphism of the protein tyrosine phosphatase PTPN22 is not associated with multiple sclerosis. Am. J. Hum. Genet. (2005) 76:184-187.
  • ITTAH M, GOTTENBERG JE, PROUST A et al.: No evidence for association between 1858 C/T single-nucleotide polymorphism of PTPN22 gene and primary Sjögren’s syndrome. Genes Immun. (2005) (In Press).
  • KAWASAKI E, HUTTON JC, EISENBARTH GS: Molecular cloning and characterization of the human transmembrane PTP homologue, phogrin, an autoantigen of Type I diabetes. Biochem. Biophys. Res. Comm. (1996) 227:440-447.
  • JURY EC, KABOURIDIS PS, FLORES-BORJA F, MAGEED RA, ISENBERG DA: Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest. (2004) 113:1176-1187.
  • JACOBSEN M, SCHWEER D, ZIEGLER A et al.: A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat. Genet. (2000) 26:495-499.
  • BARCELLOS LF, CAILLIER S, DRAGONE L et al.: PTPRC (CD45) is not associated with the development of multiple sclerosis in US patients. Nat. Genet. (2001) 29:23-24.
  • VORECHOVSKY I, KRALOVICOVA J, TCHILIAN E et al.: Does 77C- > G IN PTPRC modify autoimmune disorders linked to the major histocompatibility locus? Nat. Genet. (2001) 29:22-23.
  • MAJETI R, XU Z, PARSLOW TG et al.: An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell (2000) 103:1059-1069.
  • KUNG C, PINGEL JT, HEIKINHEIMO M et al.: Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. (2000) 6:343-345.
  • TCHILIAN EZ, WALLACE DL, WELLS RS, FLOWER DR, MORGAN G, BEVERLEY PCL: A deletion in the gene encoding the CD45 antigen in a patient with SCID. J. Immunol. (2001) 166:1308-1313.
  • BOTTINI N, OTSU A, BORGIANI P et al.: Genetic control of serum IgE levels: a study of low molecular weight protein tyrosine phosphatase. Clin. Genet. (2003) 63:228-231.
  • CORNELIS GR, WOLF-WATZ H: The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. (1997) 23:861-867.
  • YAO T, MECSAS J, HEALY JI, FALKOW S, CHIEN Y: Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, YopH. J. Exp. Med. (1999) 190:1343-1350.
  • ALONSO A, BOTTINI N, BRUCKNER S et al.: Lck dephosphorylation at Y394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J. Biol. Chem. (2004) 279:4922-4928.
  • MURLI S, WATSON RO, GALAN JE: Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. (2001) 3:795-810.
  • SINGH R, RAO V, SHAKILA H et al.: Disruption of MptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol. Microbiol. (2003) 50:751-762.
  • LAZO JS, WIPF P: Small molecule regulation of phosphatase-dependent cell signaling pathways. Oncol. Res. (2003) 13:347-352.
  • UMEZAWA K, KAWAKAMI M, WATANABE T: Molecular design and biological activities of protein-tyrosine phosphatase inhibitors. Pharmacol. Ther. (2003) 99:15-24.
  • BIALY L, WALDMANN H: Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew. Chem. Int. Ed. Engl. (2005) (In Press).
  • PEI Z, LIU G, LUBBEN TH, SZCZEPANKIEWICZ BG: Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity. Curr. Pharm. Des. (2004) 10:3481-3504.
  • BLACK E, BREED J, BREEZE AL et al.: Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. (2005) 15:2503-2507.
  • DUCRUET AP, VOGT A, WIPF P, LAZO J: Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Ann. Rev. Pharmacol. Toxicol. (2005) 45:725-750.
  • LIANG F, HUANG Z, LEE S-Y et al.: Aurintricarboxylic acid blocks both in vitro and in vivo activity of YopH, an essential virulent factor from Yersinia that cause the plague. J. Biol. Chem. (2003) 278:41734-41741.
  • TAUTZ L, BRUCKNER S, SARETH S et al.: Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J. Biol. Chem. (2005) 280:9400-9408.
  • PELLECCHIA M, BECATTINI B, CROWELL K et al.: NMR-based techniques in the hit identification and optimisation process. Expert Opin. Ther. Targets (2004) 8:597-611.
  • KUMAR S, ZHOU B, LIANG F, WANG WQ, HUANG Z, ZHANG Z-Y: Activity-based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA (2004) 101:7943-7948.
  • MORINVILLE A, MAYSINGER D, SHAVER A: From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol. Sci. (1998) 19:452-460
  • HEYLIGER CE, TAHILIANI AG, MCNEILL JH: Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science (1985) 227:1474-1477.
  • GOLDFINE AB, SIMONSON DC, FOLLI F, PATTI, ME, KAHN CR: Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. (1995) 80:3311-3320.
  • KLAMAN LD, BOSS O, PERONI OD et al.: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. (2000) 20:5479-5489.
  • JACKSON TK, SALHANICK AI, SPARKS JD, SPARKS CE, BOLOGNINO M, AMATRUDA JM: Insulin-mimetic effects of vanadate in primary cultures of rat hepatocytes. Diabetes (1988) 37:1234-1240.
  • FANTUS IG, KADOTA S, DERAGON G, FOSTER B, POSNER BI: Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry (1989) 28:8864-8871.
  • HUYER G, LIU S, KELLY J et al.: Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. (1997) 272:843-851.
  • DENU JM, LOHSE DL, VIJAYALAKSHMI J, SAPER MA, DIXON JE: Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc. Natl. Acad. Sci. USA (1996) 93:2493-2498.
  • GARCIA-MORALES P, MINAMI Y, LUONG E, KLAUSNER RD, SAMELSON LE: Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide. Proc. Natl. Acad. Sci. USA (1990) 87:9255-9259.
  • OETKEN C, VON WILLEBRAND M, MARIE-CARDINE A et al.: Induction of hyperphosphorylation and activation of the p56lck protein tyrosine kinase by phenylarsine oxide, a phosphotyrosine phosphatase inhibitor. Mol. Immunol. (1994) 31:1295-1302.
  • OETKEN C, VON WILLEBRAND M, AUTERO M, RUUTU T, ANDERSSON LC, MUSTELIN T: Phenylarsine oxide augments tyrosine phosphorylation in hematopoietic cells. Eur. J. Hematol. (1992) 49:208-214.
  • FLETCHER MC, SAMELSON LE, JUNE CH: Complex effects of phenylarsine oxide in T cells. Induction of tyrosine phosphorylation and calcium mobilization independent of CD45 expression. J. Biol. Chem. (1993) 268:23697-23703.
  • BERGGREN MM, BURNS LA, ABRAHAM RT, POWIS G: Inhibition of protein tyrosine phosphatase by the antitumor agent gallium nitrate. Cancer Res. (1993) 53:1862-1866.
  • WANG Q, JANZEN N, RAMACHANDRAN C, JIRIK F: Mechanism of inhibition of protein-tyrosine phosphatases by disodium aurothiomalate. Biochem. Pharmacol. (1997) 54:703-711.
  • SPIGELMAN Z, DOWERS A, KENNEDY S et al.: Antiproliferative effects of suramin on lymphoid cells. Cancer Res. (1987) 47:4694-4698.
  • STEIN CA, LAROCCA RV, THOMAS R, MCATEE N, MYERS CE: Suramin: an anticancer drug with a unique mechanism of action. J. Clin. Oncol. (1989) 7:499-508.
  • HAWKING F: Suramin: with special reference to onchocerciasis. Adv. Pharmacol. Chemother. (1978) 15:289-322.
  • CARDINALI M, SARTOR O, ROBBINS KC: Suramin, an experimental chemotherapeutic drug, activates the receptor for epidermal growth factor and promotes growth of certain malignant cells. J. Clin. Invest. (1992) 89:1242-1247.
  • SARTOR O, MCLELLAN CA, MYERS CE, BORNER MM: Suramin rapidly alters cellular tyrosine phosphorylation in prostate cancer cell lines. J. Clin. Invest. (1992) 90:2166-2174.
  • GHOSH J, MILLER RA: Suramin, an experimental chemotherapeutic drug, irreversibly blocks T cell CD45-protein tyrosine phosphatase in vitro. Biochem. Biophys. Res. Commun. (1993) 194:36-44.
  • ZHANG YL, KENG YF, ZHAO Y, WU L, ZHANG ZY: Suramin is an active site-directed, reversible, and tight-binding inhibitor of protein-tyrosine phosphatases. J. Biol. Chem. (1998) 273:12281-12287.
  • GALAKTIONOV K, LEE AK, ECKSTEIN J et al.: CDC25 phosphatases as potential human oncogenes. Science (1995) 269:1575-1577.
  • CANGI MG, CUKOR B, SOUNG P et al.: Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. (2000) 106:753-761.
  • MCCAIN DF, WU L, NICKEL P et al.: Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. J. Biol. Chem. (2004) 279:14713-14725.
  • ZHANG ZY, MACLEAN D, MCNAMARA DJ, SAWYER TK, DIXON JE: Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry (1994) 33:2285-2290
  • BURKE TR Jr, KOLE HK, ROLLER PP: Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp. Biochem. Biophys. Res. Commun. (1994) 204:129-134.
  • CHEN L, WU L, OTAKA A et al.: Why is phosphonodifluoromethyl phenylalanine a more potent inhibitory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases? Biochem. Biophys. Res. Commun. (1995) 216:976-984.
  • PUIUS YA, ZHAO Y, SULLIVAN M, LAWRENCE DS, ALMO SC, ZHANG ZY: Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc. Natl. Acad. Sci. USA (1997) 94:13420-13425.
  • SHEN K, KENG YF, WU L, GUO XL, LAWRENCE DS, ZHANG ZY: Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J. Biol. Chem. (2001) 276:47311-47319.
  • COOL DE, TONKS NK, CHARBONNEAU H, WALSH KA, FISCHER EH, KREBS EG: cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine phosphatase family. Proc. Natl. Acad. Sci. USA (1989) 86:5257-5261.
  • KUMAR S, LIANG F, LAWRENCE DS, ZHANG ZY: Small molecule approach to studying protein tyrosine phosphatase. Methods (2005) 35:9-21.
  • LARSEN SD, BARF T, LILJEBRIS C et al.: Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. J. Med. Chem. (2002) 45:598-622.
  • YE B, AKAMATSU M, SHOELSON SE et al.: L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides. J. Med. Chem. (1995) 38:4270-4275.
  • BURKE TR JR, YE B, AKAMATSU M et al.: 4’-O-[2-(2-fluoromalonyl)]-L-tyrosine: a phosphotyrosyl mimic for the preparation of signal transduction inhibitory peptides. J. Med. Chem. (1996) 39:1021-1027.
  • MORAN EJ, SARSHAR S, CARGILL JF et al.: Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc. (1995) 117:10787-10788.
  • FU H, PARK J, PEI D: Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases. Biochemistry (2002) 41:10700-10709.
  • PARK J, FU H, PEI D: Peptidyl aldehydes as slow-binding inhibitors of dual-specificity phosphatases. Bioorg. Med. Chem. Lett. (2004) 14:685-687.
  • LIOTTA AS, KOLE HK, FALES HM, ROTH J, BERNIER M: A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ. J. Biol. Chem. (1994) 269:22996-23001.
  • HIRIYANNA KT, BUCK WR, SHEN SS, INGEBRITSEN TS: Thiophosphorylated RCM-lysozyme, an active site-directed protein tyrosine phosphatase inhibitor, inhibits G2/M transition during mitotic cell cycle and uncouples MPF activation from G2/M transition. Exp. Cell. Res. (1995) 216:21-29.
  • JENKINS KE, HIGSON AP, SEEBERGER PH, CARUTHERS MH: Solid-phase synthesis and biochemical studies of O-boranophosphopeptides and O-dithiophosphopeptides. J. Am. Chem. Soc. (2002) 124:6584-6593.
  • COMBS AP, YUE EW, BOWER M et al.: Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J. Med. Chem. (2005) 48:6544-6548.
  • SCHMIDT A, RUTLEDGE SJ, ENDO N et al.: Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc. Natl. Acad. Sci. USA (1996) 93:3068-3073.
  • MISKI M, XING S, COOPER R, GILLUM AM, FISHER DK, MILLER RW, HIGGINS TJ: Aporphine alkaloids, CD45 protein tyrosine phosphatase inhibitors, from Rollinia ulei. Bioorg. Med. Chem. Lett. (1995) 5:1519.
  • HASRAT JA, DE BRUYNE T, DE BACKER JP, VAUQUELIN G, VLIETINCK AJ: Isoquinoline derivatives isolated from the fruit of Annona muricata as 5-HTergic 5-HT1A receptor agonists in rats: unexploited antidepressive (lead) products. J. Pharm. Pharmacol. (1997) 49:1145-1149.
  • MONTENEGRO H, GUTIERREZ M, ROMERO LI, ORTEGA-BARRIA E, CAPSON TL, RIOS LC: Aporphine alkaloids from Guatteria spp. with leishmanicidal activity. Planta Med. (2003) 69:677-679.
  • HAMAGUCHI T, SUDO T, OSADA H: RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. FEBS Lett. (1995) 372:54-58.
  • SODEOKA M, SAMPE R, KOJIMA S, BABA Y, USUI T, UEDA K, OSADA H: Synthesis of a tetronic acid library focused on inhibitors of tyrosine and dual-specificity protein phosphatases and its evaluation regarding VHR and cdc25B inhibition. J. Med. Chem. (2001) 44:3216-3222.
  • USUI T, KOJIMA S, KIDOKORO S, UEDA K, OSADA H, SODEOKA M: Design and synthesis of a dimeric derivative of RK-682 with increased inhibitory activity against VHR, a dual-specificity ERK phosphatase: implications for the molecular mechanism of the inhibition. Chem. Biol. (2001) 8:1209-1220.
  • UEDA K, USUI T, NAKAYAMA H et al.: 4-isoavenaciolide covalently binds and inhibits VHR, a dual-specificity phosphatase. FEBS Lett. (2002) 525:48-52.
  • GUNASEKERA SP, MCCARTHY PJ, KELLY-BORGES M, LOBKOVSKY E, CLARDY J: Dysidiolide: A Novel Protein Phosphatase Inhibitor from the Caribbean Sponge Dysidea etheria de Laubenfels. J. Am. Chem. Soc. (1996) 118:8759-8760.
  • BROHM D, METZGER S, BHARGAVA A, MULLER O, LIEB F, WALDMANN H: Natural products are biologically validated starting points in structural space for compound library development: solid-phase synthesis of dysidiolide-derived phosphatase inhibitors. Angew. Chem. Int. Ed. Engl. (2002) 41:307-311.
  • SANO T, USUI T, UEDA K, OSADA H, KAYA K: Isolation of new protein phosphatase inhibitors from two cyanobacteria species, Planktothrix spp. J. Nat. Prod. (2001) 64:1052-1055.
  • WRIGHT, AE, MCCARTHY PJ, SCHULTE GK: Sulfircin: a new sesterterpene sulfate from a deep-water sponge of the genus Ircinia. J. Org. Chem. (1989) 54:3472-3474.
  • CEBULA RE, BLANCHARD JL, BOISCLAIR MD, PAL K, BOCKOVICH NJ: Synthesis and phosphatase inhibitory activity of analogs of sulfircin. Bioorg. Med. Chem. Lett. (1997) 7:2015.
  • IMOTO M, KAKEYA H, SAWA T et al.: Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by Streptomyces. I. Taxonomy, isolation, and characterization. J. Antibiot. (1993) 46:1342-1346.
  • KAKEYA H, IMOTO M, TAKAHASHI Y, NAGANAWA H, TAKEUCHI T, UMEZAWA K: Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by Streptomyces. II. Structure determination. J. Antibiot. (1993) 46:1716-1719.
  • SUZUKI T, HIROKI A, WATANABE T, YAMASHITA T, TAKEI I, UMEZAWA K: Potentiation of insulin-related signal transduction by a novel protein-tyrosine phosphatase inhibitor, Et-3,4-dephostatin, on cultured 3T3-L1 adipocytes. J. Biol. Chem. (2001) 276:27511-27518.
  • LIPINSKI CA, LOMBARDO F, DOMINY BW, FEENEY PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (1997) 23:3.
  • LIPINSKI CA, LOMBARDO F, DOMINY BW, FEENEY PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (2001) 46:3.
  • WROBEL J, SREDY J, MOXHAM C et al.: PTP1B inhibition and antihyperglycemic activity in the ob/ob mouse model of novel 11-arylbenzo[β]naphtho[2,3-δ]furans and 11-arylbenzo[β]naphtho[2,3-δ]thiophenes. J. Med. Chem. (1999) 42:3199-3202.
  • ERBE DV, WANG S, ZHANG YL et al.: Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharmacol. (2005) 67:69-77.
  • MALAMAS MS, SREDY J, MOXHAM C et al.: Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem. (2000) 43:1293-1310.
  • SOHN J, KIBURZ B, LI Z et al.: Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones. J. Med. Chem. (2003) 46:2580-2588.
  • LAZO JS, NEMOTO K, PESTELL KE et al.: Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol. Pharmacol. (2002) 61:720-728.
  • AHN JH, CHO SY, HA JD et al.: Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett. (2002) 12:1941-1946.
  • URBANEK RA, SUCHARD SJ, STEELMAN GB et al.: Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J. Med. Chem. (2001) 44:1777-1793.
  • LAZO JS, ASLAN DC, SOUTHWICK EC et al.: Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. (2001) 44:4042-4049.
  • REES DC, CONGREVE M, MURRAY CW, CARR R: Fragment-based lead discovery. Nat. Rev. Drug. Discov. (2004) 3:660-672.
  • LIU G, XIN Z, LIANG H et al.: Selective protein tyrosine phosphatase 1B inhibitors: targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands. J. Med. Chem. (2003) 46:3437-3440.
  • DOMAN TN, MCGOVERN SL, WITHERBEE BJ et al.: Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. (2002) 45:2213-2221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.