124
Views
13
CrossRef citations to date
0
Altmetric
Review

The role of hypoxia inducible factor-1 in cell metabolism – a possible target in cancer therapy

, , &
Pages 583-599 | Published online: 18 Jul 2006

Bibliography

  • CUMMINS EP, TAYLOR CT: Hypoxia-responsive transcription factors. Pflugers Arch. (2005) 450(6):363-371.
  • PIPER J: Oxygen supply and energy metabolism. In: Comprehensive Human Physiology. Greger R and Windhorst U (Eds), Springer Verlag, Berlin, Germany (1996):2063-2069.
  • GREGER R: Normal values for physiological parameters. In: Comprehensive Human Physiology. Greger R and Windhorst U (Eds), Springer Verlag, Berlin, Germany (1996):2427-2447.
  • JUNGERMANN K, KIETZMANN T: Zonation of parenchymal and nonparenchymal metabolism in liver. Ann. Rev. Nutr. (1996) 16:179-203.
  • JUNGERMANN K, KIETZMANN T: Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology (2000) 31(2):255-260.
  • KIETZMANN T, DIMOVA EY, FLUGEL D, SCHARF JG: Oxygen: modulator of physiological and pathophysiological processes in the liver. Z. Gastroenterol. (2006) 44(1):67-76.
  • JUNGERMANN K, KATZ N: Functional specialization of different hepatocyte populations. Physiol. Rev. (1989) 69(3):708-764.
  • NAUCK M, WOLFLE D, KATZ N, JUNGERMANN K: Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures. Eur. J. Biochem. (1981) 119(3):657-661.
  • WOLFLE D, SCHMIDT H, JUNGERMANN K: Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures. Eur. J. Biochem. (1983) 135(3):405-412.
  • WOLFLE D, JUNGERMANN K: Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures. Eur. J. Biochem. (1985) 151(2):299-303.
  • JUNGERMANN K, KIETZMANN T: Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney Int. (1997) 51(2):402-412.
  • CONNETT RJ, HONIG CR, GAYESKI TE, BROOKS GA: Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J. Appl. Physiol. (1990) 68(3):833-842.
  • DUKE T: Dysoxia and lactate. Arch. Dis. Child. (1999) 81(4):343-350.
  • SEMENZA GL: HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. (2001) 13(2):167-171.
  • KEWLEY RJ, WHITELAW ML, CHAPMAN-SMITH A: The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. (2004) 36(2):189-204.
  • KALLIO PJ, OKAMOTO K, O’BRIEN S et al.: Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. (1998) 17(22):6573-6586.
  • JIANG BH, ZHENG JZ, LEUNG SW, ROE R, SEMENZA GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. (1997) 272(31):19253-19260.
  • PUGH CW, O’ROURKE JF, NAGAO M, GLEADLE JM, RATCLIFFE PJ: Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J. Biol. Chem. (1997) 272(17):11205-11214.
  • EMA M, HIROTA K, MIMURA J et al.: Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. (1999) 18(7):1905-1914.
  • TIAN H, MCKNIGHT SL, RUSSELL DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. (1997) 11(1):72-82.
  • FLAMME I, FROHLICH T, VON REUTERN M et al.: HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech. Dev. (1997) 63(1):51-60.
  • EMA M, TAYA S, YOKOTANI N et al.: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA (1997) 94(9):4273-4278.
  • YU AY, SHIMODA LA, IYER NV et al.: Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J. Clin. Invest. (1999) 103(5):691-696.
  • RYAN HE, LO J, JOHNSON RS: HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. (1998) 17(11):3005-3015.
  • TIAN H, HAMMER RE, MATSUMOTO AM, RUSSELL DW, MCKNIGHT SL: The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. (1998) 12(21):3320-3324.
  • GU YZ, MORAN SM, HOGENESCH JB, WARTMAN L, BRADFIELD CA: Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. (1998) 7(3):205-213.
  • KIETZMANN T, CORNESSE Y, BRECHTEL K, MODARESSI S, JUNGERMANN K: Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem. J. (2001) 354(Pt 3):531-537.
  • HARA S, HAMADA J, KOBAYASHI C, KONDO Y, IMURA N: Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem. Biophys. Res. Commun. (2001) 287(4):808-813.
  • JANG MS, PARK JE, LEE JA et al.: Binding and regulation of hypoxia-inducible factor-1 by the inhibitory PAS proteins. Biochem. Biophys. Res. Commun. (2005) 337(1):209-215.
  • MAYNARD MA, EVANS AJ, HOSOMI T et al.: Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J. (2005) 19(11):1396-1406.
  • HIROSE K, MORITA M, EMA M et al.: cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol. Cell Biol. (1996) 16(4):1706-1713.
  • TAKAHATA S, SOGAWA K, KOBAYASHI A et al.: Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem. Biophys. Res. Commun. (1998) 248(3):789-794.
  • MALTEPE E, KEITH B, ARSHAM AM, BRORSON JR, SIMON MC: The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem. Biophys. Res. Commun. (2000) 273(1):231-238.
  • SHIMBA S, ISHII N, OHTA Y et al.: Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA (2005) 102(34):12071-12076.
  • PUGH CW, RATCLIFFE PJ: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. (2003) 9(6):677-684.
  • SEMENZA G: Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. (2002) 64(5-6):993-998.
  • KAELIN WG, JR.: Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer (2002) 2(9):673-682.
  • SCHOFIELD CJ, ZHANG Z: Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. (1999) 9(6):722-731.
  • SAFRAN M, KAELIN WG, JR.: HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. (2003) 111(6):779-783.
  • SCHOFIELD CJ, RATCLIFFE PJ: Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. (2004) 5(5):343-354.
  • BRUICK RK, MCKNIGHT SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science (2001) 294(5545):1337-1340.
  • EPSTEIN AC, GLEADLE JM, MCNEILL LA et al.: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell (2001) 107(1):43-54.
  • IVAN M, HABERBERGER T, GERVASI DC et al.: Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA (2002) 99(21):13459-13464.
  • HIRSILA M, KOIVUNEN P, GUNZLER V, KIVIRIKKO KI, MYLLYHARJU J: Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. (2003) 278(33):30772-30780.
  • OEHME F, ELLINGHAUS P, KOLKHOF P et al.: Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem. Biophys. Res. Commun. (2002) 296(2):343-349.
  • METZEN E, BERCHNER-PFANNSCHMIDT U, STENGEL P et al.: Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J. Cell. Sci. (2003) 116(Pt 7):1319-1326.
  • SOILLEUX EJ, TURLEY H, TIAN YM et al.: Use of novel monoclonal antibodies to determine the expression and distribution of the hypoxia regulatory factors PHD-1, PHD-2, PHD-3 and FIH in normal and neoplastic human tissues. Histopathology (2005) 47(6):602-610.
  • BERRA E, BENIZRI E, GINOUVES A et al.: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. (2003) 22(16):4082-4090.
  • APPELHOFF RJ, TIAN YM, RAVAL RR et al.: Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. (2004) 279(37):38458-38465.
  • BERRA E, GINOUVES A, POUYSSEGUR J: The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. (2006) 7(1):41-45.
  • IVAN M, KONDO K, YANG H et al.: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science (2001) 292(5516):464-468.
  • JAAKKOLA P, MOLE DR, TIAN YM et al.: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science (2001) 292(5516):468-472.
  • YU F, WHITE SB, ZHAO Q, LEE FS: HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA (2001) 98(17):9630-9635.
  • SALCEDA S, CARO J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. (1997) 272(36):22642-22647.
  • KALLIO PJ, WILSON WJ, O’BRIEN S, MAKINO Y, POELLINGER L: Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J. Biol. Chem. (1999) 274(10):6519-6525.
  • JEONG JW, BAE MK, AHN MY et al.: Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell (2002) 111(5):709-720.
  • ARNESEN T, KONG X, EVJENTH R et al.: Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett. (2005) 579(28):6428-6432.
  • BILTON R, MAZURE N, TROTTIER E et al.: Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. J. Biol. Chem. (2005) 280(35):31132-31140.
  • YOO YG, KONG G, LEE MO: Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. (2006) 25(6):1231-1241.
  • BAE SH, JEONG JW, PARK JA et al.: Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. (2004) 324(1):394-400.
  • HEWITSON KS, MCNEILL LA, RIORDAN MV et al.: Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. (2002) 277(29):26351-26355.
  • DANN CE 3rd, BRUICK RK, DEISENHOFER J: Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA (2002) 99(24):15351-15356.
  • LANDO D, PEET DJ, GORMAN JJ et al.: FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. (2002) 16(12):1466-1471.
  • WENGER RH, STIEHL DP, CAMENISCH G: Integration of oxygen signaling at the consensus HRE. Sci. STKE (2005) 2005(306):re12.
  • GORLACH A, CAMENISCH G, KVIETIKOVA I et al.: Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim. Biophys. Acta (2000) 1493(1-2):125-134.
  • LANG KJ, KAPPEL A, GOODALL GJ: Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol. Biol. Cell (2002) 13(5):1792-1801.
  • STEIN I, ITIN A, EINAT P et al.: Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell Biol. (1998) 18(6):3112-3119.
  • TINTON SA, BUC-CALDERON PM: Hypoxia increases the association of 4E-binding protein 1 with the initiation factor 4E in isolated rat hepatocytes. FEBS Lett. (1999) 446(1):55-59.
  • KIETZMANN T, GORLACH A: Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin. Cell Dev. Biol. (2005) 16(4-5):474-486.
  • HUANG LE, ARANY Z, LIVINGSTON DM, BUNN HF: Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. (1996) 271(50):32253-32259.
  • WELSH SJ, BELLAMY WT, BRIEHL MM, POWIS G: The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. (2002) 62(17):5089-5095.
  • RICHARD DE, BERRA E, POUYSSEGUR J: Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J. Biol. Chem. (2000) 275(35):26765-26771.
  • GORLACH A, DIEBOLD I, SCHINI-KERTH VB et al.: Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ. Res. (2001) 89(1):47-54.
  • BEL AIBA RS, GORLACH A: Regulation of the hypoxia-inducible transcription factor HIF-1 by reactive oxygen species in smooth muscle cells. Adv. Exp. Med. Biol. (2003) 536:171-178.
  • BELAIBA RS, DJORDJEVIC T, BONELLO S et al.: Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol. Chem. (2004) 385(3-4):249-257.
  • CHANG TC, HUANG CJ, TAM K et al.: Stabilization of hypoxia-inducible factor-1{alpha} by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. J. Biol. Chem. (2005) 280(44):36567-36574.
  • KOZHUKHAR AV, YASINSKA IM, SUMBAYEV VV: Nitric oxide inhibits HIF-1alpha protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie (2006) 88(5):411-418.
  • CALLAPINA M, ZHOU J, SCHMID T, KOHL R, BRUNE B: NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic. Biol. Med. (2005) 39(7):925-936.
  • GORLACH A, BERCHNER-PFANNSCHMIDT U, WOTZLAW C et al.: Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1. Thromb. Haemost. (2003) 89(5):926-935.
  • MOTTET D, DUMONT V, DECCACHE Y et al.: Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J. Biol. Chem. (2003) 278(33):31277-31285.
  • ZUNDEL W, SCHINDLER C, HAAS-KOGAN D et al.: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. (2000) 14(4):391-396.
  • BARDOS JI, CHAU NM, ASHCROFT M: Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol. Cell Biol. (2004) 24(7):2905-2914.
  • HUDSON CC, LIU M, CHIANG GG et al.: Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. (2002) 22(20):7004-7014.
  • HARDIE DG: Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology (2003) 144(12):5179-5183.
  • KIETZMANN T, JUNGERMANN K, GORLACH A: Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thromb. Haemost. (2003) 89(4):666-673.
  • KALUZ S, KALUZOVA M, STANBRIDGE EJ: The role of extracellular signal-regulated protein kinase in transcriptional regulation of the hypoxia marker carbonic anhydrase IX. J. Cell. Biochem. (2006) 97(1):207-216.
  • HADDAD JJ, HARB HL: Cytokines and the regulation of hypoxia-inducible factor (HIF)-1alpha. Int. Immunopharmacol. (2005) 5(3):461-483.
  • COMERFORD KM, CUMMINS EP, TAYLOR CT: c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res. (2004) 64(24):9057-9061.
  • MINET E, ARNOULD T, MICHEL G et al.: ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. (2000) 468(1):53-58.
  • LEE E, YIM S, LEE SK, PARK H: Two transactivation domains of hypoxia-inducible factor-1alpha regulated by the MEK-1/p42/p44 MAPK pathway. Mol. Cells (2002) 14(1):9-15.
  • ROSENBERGER C, ROSEN S, HEYMAN SN: Current understanding of HIF in renal disease. Kidney Blood Press. Res. (2005) 28(5-6):325-340.
  • DIMOVA EY, SAMOYLENKO A, KIETZMANN T: Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression. Antioxid. Redox Signal. (2004) 6(4):777-791.
  • SEMENZA GL: Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer (2003) 3(10):721-732.
  • EBERT BL, GLEADLE JM, O’ROURKE JF et al.: Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochem. J. (1996) 313(Pt 3):809-814.
  • IYER NV, KOTCH LE, AGANI F et al.: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. (1998) 12(2):149-162.
  • WOOD SM, WIESENER MS, YEATES KM et al.: Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 alpha-subunit (HIF-1alpha). Characterization of hif-1alpha-dependent and -independent hypoxia-inducible gene expression. J. Biol. Chem. (1998) 273(14):8360-8368.
  • ROTH U, JUNGERMANN K, KIETZMANN T: Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes. Biol. Chem. (2004) 385(3-4):239-247.
  • KRONES A, JUNGERMANN K, KIETZMANN T: Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology (2001) 142(6):2707-2718.
  • PILKIS SJ, CLAUS TH, KURLAND IJ, LANGE AJ: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Ann. Rev. Biochem. (1995) 64:799-835.
  • OKAR DA, MANZANO A, NAVARRO-SABATE A et al.: PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. (2001) 26(1):30-35.
  • MINCHENKO O, OPENTANOVA I, CARO J: Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett. (2003) 554(3):264-270.
  • MINCHENKO A, LESHCHINSKY I, OPENTANOVA I et al.: Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. (2002) 277(8):6183-6187.
  • OBACH M, NAVARRO-SABATE A, CARO J et al.: 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. (2004) 279(51):53562-53570.
  • FUKASAWA M, TSUCHIYA T, TAKAYAMA E et al.: Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J. Biochem. (Tokyo) (2004) 136(3):273-277.
  • MINCHENKO OH, OGURA T, OPENTANOVA IL, MINCHENKO DO, ESUMI H: Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol. Cell Biochem. (2005) 280(1-2):227-234.
  • HELLKAMP J, CHRIST B, BASTIAN H, JUNGERMANN K: Modulation by oxygen of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Eur. J. Biochem. (1991) 198(3):635-639.
  • BRATKE J, KIETZMANN T, JUNGERMANN K: Identification of an oxygen-responsive element in the 5’-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation. Biochem. J. (1999) 339(Pt 3):563-569.
  • POIZAT C, KERIEL C, GARNIER A et al.: An experimental model of hypoxia on isolated rat heart in recirculating system: study of fatty acid metabolism with an iodinated fatty acid. Arch. Int. Physiol. Biochim. Biophys. (1993) 101(6):347-356.
  • HOCHACHKA PW, BUCK LT, DOLL CJ, LAND SC: Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA (1996) 93(18):9493-9498.
  • WEBSTER KA, GUNNING P, HARDEMAN E, WALLACE DC, KEDES L: Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J. Cell. Physiol. (1990) 142(3):566-573.
  • KIM JW, TCHERNYSHYOV I, SEMENZA GL, DANG CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. (2006) 3(3):177-185.
  • PAPANDREOU I, CAIRNS RA, FONTANA L, LIM AL, DENKO NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. (2006) 3(3):187-197.
  • DALGARD CL, LU H, MOHYELDIN A, VERMA A: Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem. J. (2004) 380(Pt 2):419-424.
  • LU H, DALGARD CL, MOHYELDIN A et al.: Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. (2005) 280(51):41928-41939.
  • TOMLINSON IP, ALAM NA, ROWAN AJ et al.: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. (2002) 30(4):406-410.
  • ENG C, KIURU M, FERNANDEZ MJ, AALTONEN LA: A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer (2003) 3(3):193-202.
  • ISAACS JS, JUNG YJ, MOLE DR et al.: HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell (2005) 8(2):143-153.
  • SELAK MA, ARMOUR SM, MACKENZIE ED et al.: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell (2005) 7(1):77-85.
  • POLLARD PJ, BRIERE JJ, ALAM NA et al.: Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. (2005) 14(15):2231-2239.
  • ESTEBAN MA, MAXWELL PH: HIF, a missing link between metabolism and cancer. Nat. Med. (2005) 11(10):1047-1048.
  • STUBBS M, MCSHEEHY PM, GRIFFITHS JR, BASHFORD CL: Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today (2000) 6(1):15-19.
  • MAREN TH: Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. (1967) 47(4):595-781.
  • BRECHUE WF, KINNE-SAFFRAN E, KINNE RK, MAREN TH: Localization and activity of renal carbonic anhydrase (CA) in CA-II deficient mice. Biochim. Biophys. Acta (1991) 1066(2):201-207.
  • COULSON RA, HERBERT JD: A role for carbonic anhydrase in intermediary metabolism. Ann. N. Y. Acad. Sci. (1984) 429:505-515.
  • TASHIAN RE: The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays (1989) 10(6):186-192.
  • HENRY RP: Multiple roles of carbonic anhydrase in cellular transport and metabolism. Ann. Rev. Physiol. (1996) 58:523-538.
  • TANIUCHI K, NISHIMORI I, TAKEUCHI T, OHTSUKI Y, ONISHI S: cDNA cloning and developmental expression of murine carbonic anhydrase-related proteins VIII, X, and XI. Brain Res. Mol. Brain Res. (2002) 109(1-2):207-215.
  • WYKOFF CC, BEASLEY NJ, WATSON PH et al.: Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. (2000) 60(24):7075-7083.
  • HALAAS JL, GAJIWALA KS, MAFFEI M et al.: Weight-reducing effects of the plasma protein encoded by the obese gene. Science (1995) 269(5223):543-546.
  • AHIMA RS, FLIER JS: Leptin. Ann. Rev. Physiol. (2000) 62:413-437.
  • FANTUZZI G, FAGGIONI R: Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. (2000) 68(4):437-446.
  • LINNEMANN K, MALEK A, SCHNEIDER H, FUSCH C: Physiological and pathological regulation of feto/placento/maternal leptin expression. Biochem. Soc Trans (2001) 29(Pt 2):86-90.
  • CENA H, ZACCARDO A, ROGGI C: [Obesity etiology: role of leptin]. Minerva Gastroenterol. Dietol. (2002) 48(4):303-308.
  • HOUSA D, HOUSOVA J, VERNEROVA Z, HALUZIK M: Adipocytokines and cancer. Physiol. Res. (2006) 55(3):233-244.
  • AMBROSINI G, NATH AK, SIERRA-HONIGMANN MR, FLORES-RIVEROS J: Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1. J. Biol. Chem. (2002) 277(37):34601-34609.
  • GROSFELD A, ANDRE J, HAUGUEL-DE MOUZON S et al.: Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J. Biol. Chem. (2002) 277(45):42953-42957.
  • LOLMEDE K, DURAND DE SAINT FRONT V, GALITZKY J, LAFONTAN M, BOULOUMIE A: Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int. J. Obes. Relat. Metab. Disord. (2003) 27(10):1187-1195.
  • WALLACE AM, MCMAHON AD, PACKARD CJ et al.: Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation (2001) 104(25):3052-3056.
  • SEGAL KR, LANDT M, KLEIN S: Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes (1996) 45(7):988-991.
  • SODERBERG S, OLSSON T, ELIASSON M, JOHNSON O, AHREN B: Plasma leptin levels are associated with abnormal fibrinolysis in men and postmenopausal women. J. Intern. Med. (1999) 245(5):533-543.
  • CHESSLER SD, FUJIMOTO WY, SHOFER JB, BOYKO EJ, WEIGLE DS: Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes (1998) 47(2):239-243.
  • MCNEELY MJ, BOYKO EJ, WEIGLE DS et al.: Association between baseline plasma leptin levels and subsequent development of diabetes in Japanese Americans. Diabetes Care (1999) 22(1):65-70.
  • WYKOFF CC, PUGH CW, MAXWELL PH, HARRIS AL, RATCLIFFE PJ: Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene (2000) 19(54):6297-6305.
  • FESUS L, PIACENTINI M: Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem. Sci. (2002) 27(10):534-539.
  • LORAND L, GRAHAM RM: Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. (2003) 4(2):140-156.
  • HASEGAWA G, SUWA M, ICHIKAWA Y et al.: A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem. J. (2003) 373(Pt 3):793-803.
  • FESUS L, SZONDY Z: Transglutaminase 2 in the balance of cell death and survival. FEBS Lett. (2005) 579(15):3297-3302.
  • VERDERIO EA, JOHNSON T, GRIFFIN M: Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids (2004) 26(4):387-404.
  • BIRCKBICHLER PJ, PATTERSON MK, JR.: Cellular transglutaminase, growth, and transformation. Ann. N. Y. Acad. Sci. (1978) 312:354-365.
  • BIRCKBICHLER PJ, ORR GR, PATTERSON MK, JR., CONWAY E, CARTER HA: Increase in proliferative markers after inhibition of transglutaminase. Proc. Natl. Acad. Sci. USA (1981) 78(8):5005-5008.
  • LEVITZKI A, WILLINGHAM M, PASTAN I: Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA (1980) 77(5):2706-2710.
  • ROLFS A, KVIETIKOVA I, GASSMANN M, WENGER RH: Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. (1997) 272(32):20055-20062.
  • TACCHINI L, BIANCHI L, BERNELLI-ZAZZERA A, CAIRO G: Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. (1999) 274(34):24142-24146.
  • MUKHOPADHYAY CK, MAZUMDER B, FOX PL: Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. (2000) 275(28):21048-21054.
  • NORDSMARK M, BENTZEN SM, RUDAT V et al.: Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol. (2005) 77(1):18-24.
  • YOUNES M, JUAREZ D, LECHAGO LV, LERNER SP: Glut 1 expression in transitional cell carcinoma of the urinary bladder is associated with poor patient survival. Anti-Cancer Res. (2001) 21(1B):575-578.
  • SWINSON DE, O’BYRNE KJ: Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clin. Lung Cancer (2006) 7(4):250-256.
  • GRIFFITHS EA, PRITCHARD SA, WELCH IM, PRICE PM, WEST CM: Is the hypoxia-inducible factor pathway important in gastric cancer? Eur. J. Cancer (2005) 41(18):2792-2805.
  • BRENNAN PA, MACKENZIE N, QUINTERO M: Hypoxia-inducible factor 1alpha in oral cancer. J. Oral Pathol. Med. (2005) 34(7):385-389.
  • MAXWELL PH: The HIF pathway in cancer. Semin. Cell Dev. Biol. (2005) 16(4-5):523-530.
  • URANO N, FUJIWARA Y, DOKI Y et al.: Overexpression of hypoxia-inducible factor-1 alpha in gastric adenocarcinoma. Gastric Cancer (2006) 9(1):44-49.
  • CHEN WT, HUANG CJ, WU MT et al.: Hypoxia-inducible factor-1alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor. Jpn. J. Clin. Oncol. (2005) 35(4):207-213.
  • LI J, SHI M, CAO Y et al.: Knockdown of hypoxia-inducible factor-1alpha in breast carcinoma MCF-7 cells results in reduced tumor growth and increased sensitivity to methotrexate. Biochem. Biophys. Res. Commun. (2006) 342(4):1341-1351.
  • JENSEN RL, RAGEL BT, WHANG K, GILLESPIE D: Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J. Neurooncol. (2006) Epub ahead of print.
  • ZHANG X, KON T, WANG H et al.: Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha. Cancer Res. (2004) 64(22):8139-8142.
  • WARBURG O: Stoffwechsel der Tumoren. Springer, Berlin, Germany (1927).
  • ISIDORO A, CASADO E, REDONDO A et al.: Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis (2005) 26(12):2095-2104.
  • LANGBEIN S, ZERILLI M, ZUR HAUSEN A et al.: Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J. Cancer (2006) 94(4):578-585.
  • BROWN CK, KHODAREV NN, YU J et al.: Glioblastoma cells block radiation-induced programmed cell death of endothelial cells. FEBS Lett. (2004) 565(1-3):167-170.
  • MOELLER BJ, DEWHIRST MW: Raising the bar: how HIF-1 helps determine tumor radiosensitivity. Cell Cycle (2004) 3(9):1107-1110.
  • KOUKOURAKIS MI, GIATROMANOLAKI A, HARRIS AL, SIVRIDIS E: Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. (2006) 66(2):632-637.
  • HARRIS AL: Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer (2002) 2(1):38-47.
  • GRIFFITHS JR, MCSHEEHY PM, ROBINSON SP et al.: Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): evidence of an anabolic role for the HIF-1 pathway. Cancer Res. (2002) 62(3):688-695.
  • POWIS G, KIRKPATRICK L: Hypoxia inducible factor-1alpha as a cancer drug target. Mol. Cancer Ther. (2004) 3(5):647-654.
  • QUINTERO M, MACKENZIE N, BRENNAN PA: Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur. J. Surg. Oncol. (2004) 30(5):465-468.
  • YEO EJ, CHUN YS, PARK JW: New anticancer strategies targeting HIF-1. Biochem. Pharmacol. (2004) 68(6):1061-1069.
  • CIECHANOVER A, SCHWARTZ AL: The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim. Biophys. Acta (2004) 1695(1-3):3-17.
  • BELOZEROV VE, VAN MEIR EG: Hypoxia inducible factor-1: a novel target for cancer therapy. Anti-Cancer Drugs (2005) 16(9):901-909.
  • BRAHIMI-HORN C, POUYSSEGUR J: When hypoxia signalling meets the ubiquitin-proteasomal pathway, new targets for cancer therapy. Crit. Rev. Oncol. Hematol. (2005) 53(2):115-123.
  • SEMENZA GL: Development of novel therapeutic strategies that target HIF-1. Expert Opin. Ther. Targets (2006) 10(2):267-280.
  • RICHTER K, BUCHNER J: Hsp90: chaperoning signal transduction. J. Cell. Physiol. (2001) 188(3):281-290.
  • MINET E, MOTTET D, MICHEL G et al.: Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett. (1999) 460(2):251-256.
  • KATSCHINSKI DM, LE L, HEINRICH D et al.: Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J. Biol. Chem. (2002) 277(11):9262-9267.
  • MABJEESH NJ, POST DE, WILLARD MT et al.: Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. (2002) 62(9):2478-2482.
  • HUR E, KIM HH, CHOI SM et al.: Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol. Pharmacol. (2002) 62(5):975-982.
  • ISAACS JS, JUNG YJ, MIMNAUGH EG et al.: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J. Biol. Chem. (2002) 277(33):29936-29944.
  • CHIOSIS G, TIMAUL MN, LUCAS B et al.: A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. (2001) 8(3):289-299.
  • PENG X, GUO X, BORKAN SC et al.: Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J. Biol. Chem. (2005) 280(13):13148-13152.
  • NEWCOMB EW, ALI MA, SCHNEE T et al.: Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1alpha expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro-oncol. (2005) 7(3):225-235.
  • OIKONOMAKOS NG, SCHNIER JB, ZOGRAPHOS SE et al.: Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site. J. Biol. Chem. (2000) 275(44):34566-34573.
  • SOLEAS GJ, DIAMANDIS EP, GOLDBERG DM: Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. (1997) 30(2):91-113.
  • PARK JB: Inhibition of glucose and dehydroascorbic acid uptakes by resveratrol in human transformed myelocytic cells. J. Nat. Prod. (2001) 64:381-384.
  • CHAN WH: Effect of resveratrol on high glucose-induced stress in human leukemia K562 cells. J. Cell. Biochem. (2005) 94(6):1267-1279.
  • FRESCAS D, VALENTI L, ACCILI D: Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. (2005) 280(21):20589-20595.
  • TANG TT, LASKY LA: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J. Biol. Chem. (2003) 278(32):30125-30135.
  • CAO Z, FANG J, XIA C, SHI X, JIANG BH: trans-3,4,5’-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin. Cancer Res. (2004) 10(15):5253-5263.
  • ZHANG Q, TANG X, LU QY et al.: Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1alpha and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol. Cancer Ther. (2005) 4(10):1465-1474.
  • WANG GL, JIANG BH, SEMENZA GL: Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. (1995) 216(2):669-675.
  • SZKUDELSKI T, NOGOWSKI L, PRUSZYNSKA-OSZMALEK E, KACZMAREK P, SZKUDELSKA K: Genistein restricts leptin secretion from rat adipocytes. J. Steroid Biochem. Mol. Biol. (2005) 96(3-4):301-307.
  • WELSH S, WILLIAMS R, KIRKPATRICK L, PAINE-MURRIETA G, POWIS G: Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. (2004) 3(3):233-244.
  • JORDAN BF, BLACK K, ROBEY IF et al.: Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed. (2005) 18(7):430-439.
  • MANALO DJ, ROWAN A, LAVOIE T et al.: Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood (2005) 105(2):659-669.
  • GONG P, HU B, STEWART D et al.: Cobalt induces heme oxygenase-1 expression by a hypoxia-inducible factor-independent mechanism in Chinese hamster ovary cells: regulation by Nrf2 and MafG transcription factors. J. Biol. Chem. (2001) 276(29):27018-27025.
  • LOUIS CA, REICHNER JS, HENRY WL Jr et al.: Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am. J. Physiol. (1998) 274(3 Pt 2):R775-R782.
  • LONGO LD, PACKIANATHAN S, MCQUEARY JA et al.: Acute hypoxia increases ornithine decarboxylase activity and polyamine concentrations in fetal rat brain. Proc. Natl. Acad. Sci. USA (1993) 90(2):692-696.
  • COLOMBATTO S, GIRIBALDI G, VARGIU C, GRILLO MA: Modulation of ornithine aminotransferase activity by oxygen in rat hepatocyte cultures. Biochim. Biophys. Acta (1994) 1224(3):329-332.
  • VARGIU C, COLOMBATTO S, GIRIBALDI G, GRILLO MA: Spermidine acetyltransferase in rat hepatocytes cultured at different oxygen tensions. Hepatology (1996) 24(4):924-927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.