241
Views
56
CrossRef citations to date
0
Altmetric
Review

Heat-shock proteins: new keys to the development of cytoprotective therapies

, &
Pages 759-769 | Published online: 18 Sep 2006

Bibliography

  • TISSIERES A, MITCHELL HK, TRACY UM: Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. (1974) 84:389-398.
  • OSTBERG JR, KAPLAN KC, REPASKY EA: Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. Int. J. Hyperthermia (2002) 18:552-562.
  • FEDER ME, HOFMANN GE: Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol. (1999) 61:243-282.
  • HOROVITZ A, WILLISON KR: Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol. (2005) 15:646-651.
  • RUTHERFORD SL: Between genotype and phenotype: Protein chaperones and evolvability. Nat. Rev. Genet. (2003) 4:263-274.
  • WANG XY, LI Y, YANG G, SUBJECK JR: Current ideas about applications of heat shock proteins in vaccine design and immunotherapy. Int. J. Hyperthermia (2005) 21:717-722.
  • BRODSKY JL, HAMAMOTO S, FELDHEIM D, SCHEKMAN R: Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles of BiP and cytosolic Hsc70. J. Cell Biol. (1993) 120:95-102.
  • SREEDHAR AS, CSERMELY P: Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy. Pharmacol. Ther. (2004) 101:227-257.
  • STANKIEWICZ AR, LACHAPELLE G, FOO CP, RADICIONI SM, MOSSER DD: Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J. Biol. Chem. (2005) 280:38729-38739.
  • LEE JS, LEE JJ, SEO JS: HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J. Biol. Chem. (2005) 280:6634-6641.
  • NYLANDSTED J, GYRD-HANSEN M, DANIELEWICZ A et al.: Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. (2004) 200:425-435.
  • OHTSUKA K, KAWASHIMA D, GU Y, SAITO K: Inducers and co-inducers of moledular chaperones. Int. J. Hyperthermia (2005) 21:703-711.
  • AUFRICHT C: Heat-shock protein 70: molecular supertool? Pediatr. Nephrol. (2005) 20:707-713.
  • CALDERWOOD SK, KHALEQUE MA, SAWYER DB, CIOCCA DR: Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. (2006) 31:164-172.
  • SOTI C, NAGY E, GIRICZ Z, VIGH L, CSERMELY P, FERDINANDY P: Heat shock proteins as emerging therapeutic targets. Br. J. Pharmacol. (2005) 146:769-780.
  • WORKMAN P: Translating Hsp90 biology into Hsp90 drugs. Curr. Cancer Drug Targets (2003) 3:297-300.
  • ISAACS JS: Heat-shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up? Expert Opin. Invest. Drugs (2005) 14:569-589.
  • KUNISAWA J, SHASTRI N: Hsp90α chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity (2006) 24:523-534.
  • HIGHTOWER LE, GUIDON PT Jr: Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell Physiol. (1989) 138:257-266.
  • FLESHNER M, JOHNSON JD: Endogenous extra-cellular heat shock protein 72: Releasing signal(s) and function. Int. J. Hyperthemia (2005) 21:457-471.
  • POCKLEY AG, GEORGIADES A, THULIN T, DE FAIRE U, FROSTEGARD J: Heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension (2003) 42:235-238.
  • JOHNSON JD, FLESHNER M: Releasing signals, secretory pathways, and immune function of endogenous extracellualr heat shock protein 72. J. Leuk. Biol. (2006) 79:425-434.
  • EVDONIN AL, MARTYNOVA MG, BYSTROVA OA, GUZHOVA IV, MARGULIS BA, MEDVEDEVA ND: The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur. J. Cell Biol. (2006) 85:443-455.
  • JOHNSTONE RM: Exosomes biological significance. Blood Cell Mol. Dis. (2006) 36:315-321.
  • LANCASTER GI, FEBBRAIO MA: Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. (2005) 280:23349-23355.
  • JOHNSON JD, CAMPISI J, SHARKEY CM, KENNEDY SL, NICKERSON M, FLESHNER M: Adrenergic receptors mediate stress-induced elevation in endogenous extracellular Hsp72. J. Appl. Physiol. (2005) 99:1789-1795.
  • SAVINA A, FURLAN M, VIDAL M, COLOMBO MI: Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. (2003) 278:20083-20090.
  • WALSH RC, KOUKOULAS I, GARNHAM A, MOSELEY PL, HARGREAVES M, FEBBRAIO MA: Exercise increases serum Hsp72 in humans. Cell Stress Chaperon. (2001) 6:386-393.
  • MALLEGOL J, VAN NIEL G, HEYMAN M: Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Mol. Dis. (2005) 35:11-16.
  • DYBDAHL B, WAHBA A, LIEN E et al.: Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation (2002) 105:685-690
  • ASEA A, KRAEFT SK, KURT-JONES EA et al.: HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. (2000) 6:435-442.
  • YOO CG, LEE S, LEE CT, KIM YW, HAN SK, SHIM YS: Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J. Immunol. (2000) 164:5416-5423.
  • WANG Y, GAO B, TSAN M-F: Induction of cytokines by hat shock proteins and concanabalin A in murine splenocytws. Cytokine (2005) 32:149-154.
  • GASTPAR R, GEHRMANN M, BAUSERO MA et al.: Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. (2005) 65:5238-5247.
  • ZHANG Y, ZAN Y, SHAN M et al.: Effects of heat shock protein gp96 on human dendritic cell maturation and CTL expansion. Biochem. Biophys. Res. Commun. (2006) 344:581-587.
  • MATZINGER P: The danger model. Science (2002) 296:301-305.
  • GALLUCCI S, LOLKEMA M, MATZINGER P: Natural adjuvants: endogenous activators of dendritic cells. Nat Med. (1999) 5:1249-1255.
  • SHI Y, EVANS JE, ROCK KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature (2003) 425:516-521.
  • MARTINON F, PETRILLI V, MAYOR A, TARDIVEL A, TSCHOPP J: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature (2006) 440:237-241.
  • ERLANDSSON-HARRIS H, ANDERSSON U: The nuclear protein HMGB1 as a proinflammatory mediator. Eur. J. Immunol. (2004) 34:1503-1512.
  • EUSTACE BK, SAKURAI T, STEWAR JK et al.: Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat. Cell Biol. (2004) 6:507-514.
  • PICARD D: Hsp90 invades the outside. Nat. Cell Biol. (2004) 6:479-480.
  • WOLFERS J, LOZIER A, RAPOSO G et al.: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. (2001) 7:297-303.
  • SRIVASTAVA PK: Therapeutic cancer vaccines. Curr. Opin. Immunol. (2006) 18:201-205.
  • KICHLER-LAKOMY C, BUDINSKY AC, WOLDRAM R et al.: Deficiencies in phenotype expression and function of dendritic cells from patients with early breast cancer. Eur. J. Med. Res. (2006) 11:7-12.
  • REN W, STRUBE R, ZHANG X, CHEN SY, HUANG XF: Potent tumor-specific immunity induced by an in vivo heat shock protein-suicide gene-based tumor vaccine. Cancer Res. (2004) 64:6645-6651.
  • VAN MOLLE W, WIELOCKX B, MAHIEU T et al.: HSP70 protects against TNF-induced lethal inflammatory shock. Immunity (2002) 16:685-695.
  • LIU X, ENGELMAN RM, MORARU II et al.: Heat shock. A new approach for myocardial preservation in cardiac surgery. Circulation (1992) 86(Suppl. 5):II358-II363.
  • LIU C, CHEN S, KAMME F, HU BR: Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience (2005) 134:69-80.
  • MALHOTRA V, EAVES-PYLES T, ODOMS K, QUAID G, SHANLEY TP, WONG HR: Heat shock inhibits activation of NF-kappaB in the absence of heat shock factor-1. Biochem. Biophys. Res. Commun. (2002) 291:453-457.
  • MCDUNN JE, COBB JP: That which does not kill you makes you stronger: a molecular mechanism for preconditioning. SciSTKE (2005) 291:e34.
  • KIM WJ, BACK SH, KIM V, RYU I, JANG SK: Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell Biol. (2005) 25:2450-2462.
  • NOVER L, SCHARF KD, NEUMANN D: Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. (1983) 3:1648-1655.
  • KEDERSHA N, STOECKLIN G, AYODELE M et al.: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. (2005) 169:871-884.
  • KEDERSHA N, ANDERSON P: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. (2002) 30:963-969.
  • CULLINAN SB, DIEHL JA: Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. (2006) 38:317-332.
  • MCEWEN E, KEDERSHA N, SONG B et al.: Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. (2005) 280:16925-16933.
  • SCHEPER GC, MULDER J, KLEIJN M, VOORMA HO, THOMAS AA, VAN WIJK R: Inactivation of eIF2B and phosphorylation of PHAS-I in heat-shocked rat hepatoma cells. J. Biol. Chem. (1997) 272:26850-26856.
  • DOERWALD L, VAN GENESEN ST, ONNEKINK C et al.: The effect of alphaB-crystallin and Hsp27 on the availability translation initiation factors in heat-shocked cells. Cell Mol. Life Sci. (2006) 63:735-743.
  • SHAMOVSKY I, IVANNIKOV M, KANDEL ES, GERSHON D, NUDLER E: RNA-mediated response to heat shock in mammalian cells. Nature (2006) 440:556-560.
  • ALLEN TA, VON KAENEL S, GOODRICH JA, KUGEL JF: The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. (2004) 11:816-821.
  • ESPINOZA CA, ALLEN TA, HIEB AR, KUGEL JF, GOODRICH JA: B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. (2004) 11:822-829.
  • NGUYEN VT, KISS T, MICHELS AA, BENSAUDE O: 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature (2001) 414:322-325.
  • YANG Z, ZHU Q, LUO K, ZHOU Q: The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature (2001) 414:317-322.
  • BOYCE M, BRYANT KF, JOUSSE C et al.: A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science (2005) 307:935-939.
  • OZCAN U, CAO Q, YILMAZ E et al.: Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science (2004) 306:457-461.
  • HETZ C, BERNASCONI P, FISHER J et al.: Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science (2006) 312:572-576.
  • BLACKSTONE E, MORRISON M, ROTH MB: H2S induces a suspended animation-like state in mice. Science (2005) 308:518.
  • MENG Q: Hypothermic preservation of hepatocytes. Biotechnol. Prog. (2003) 19:1118-1127.
  • TISHERMAN SA: Hypothermia and injury. Curr. Opin. Crit. Care (2004) 10:512-519.
  • SANDERS AB: Therapeutic hypothermia after cardiac arrest. Curr. Opin. Crit. Care (2006) 12:213-217.
  • SONNA LA, KUHLMEIER MM, CARTER HC, HASDAY JD, LILLY CM, FAIRCHILD KD: The effect of moderate hypothermia on gene expression by THP-1 cells: A cDNA microarray study. Physiol. Genomics (2006) 26:91-98.
  • CHEN Z, CHEN H, RHEE P et al.: Induction of profound hypothermia modulates the immune/inflammatory response in a swine model of lethal hemorrhage. Resuscitation (2005) 66:209-216.
  • SANDOUKA A, BALOGUN E, FORESTI R et al.: Carbon monoxide-releasing molecules (CO-RMs) modulate respiration in isolated mitochondria. Cell Mol. Biol. (2005) 51:423-432.
  • NYSTUL TG, ROTH MB: Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. (2004) 101:9133-9136.
  • TEODORO RO, O’FARRELL PH: Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO J. (2003) 22:580-587.
  • KIM HP, WANG X, ZHANG J et al.: Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J. Immunol. (2005) 175:2622-2629.
  • OTTERBEIN LE, BACH FH, ALAM J et al.: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. (2000) 6:422-428.
  • KIM HP, RYTER S, CHOI AM: CO as a signaling molecule. Ann. Rev. Pharmacol. Toxicol. (2006) 46:411-449.
  • HAN Y, QIN J, CHANG X, YANG Z, DU J: Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell. Mol. Neurobiol. (2006) 26:101-107.
  • BRYAN NS, FERNANDEZ BO, BAUER SM et al.: Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol. (2005) 1:290-297.
  • PRITCHARD MT, LI Z, REPASKY EA: Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J. Leukoc. Biol. (2005) 78:630-638.
  • KIM YM, SON K, HONG SJ et al.: Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol. Med. (1998) 4:179-190.
  • YUN BG, MATTS JA, MATTS RL: Interdomain interactions regulate the activation of the heme-regulated eIF2α kinase. Biochem. Biophys. Acta (2005) 1725:174-181.
  • BALOGH G, HORVATH I, NAGY E et al.: The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J. (2005) 272:6077-6086.
  • YEUNG T, TEREBIZNIK M, YU L et al.: Receptor activation alters inner surface potential during phagocytosis. Science (2006) 313:347-351.
  • THAKER PH, HAN LY, KAMAT AA et al.: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. (2006) 12:939-944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.