207
Views
21
CrossRef citations to date
0
Altmetric
Review

Tackling EGFR signaling with TACE antagonists: a rational target for metalloprotease inhibitors in cancer

Pages 1287-1298 | Published online: 02 Oct 2007

Bibliography

  • ULLRICH A, COUSSENS L, HAYFLICK JS et al.: Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature (1984) 309(5967):418-425.
  • HOLBRO T, HYNES NE: ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. (2004) 44:195-217.
  • HIRSCH FR, VARELLA-GARCIA M, BUNN PA Jr et al.: Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. (2003) 21(20):3798-3807.
  • FREDERICK L, WANG XY, ELEY G, JAMES CD: Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. (2000) 60(5):1383-1387.
  • BHARGAVA R, GERALD WL, LI AR et al.: EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol. (2005) 18(8):1027-1033.
  • LEE J, JANG KT, KI CS et al.: Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer (2007) 109(8):1561-1569.
  • LASSUS H, SIHTO H, LEMINEN A et al.: Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J. Mol. Med. (2006) 84(8):671-681.
  • CHUNG CH, ELY K, MCGAVRAN L et al.: Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J. Clin. Oncol. (2006) 24(25):4170-4176.
  • DOWNWARD J: Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer (2003) 3(1):11-22.
  • BACHMAN KE, ARGANI P, SAMUELS Y et al.: The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. (2004) 3(8):772-775.
  • CAMPBELL IG, RUSSELL SE, CHOONG DY et al.: Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. (2004) 64(21):7678-7681.
  • SAMUELS Y, WANG Z, BARDELLI A et al.: High frequency of mutations of the PIK3CA gene in human cancers. Science (2004) 304(5670):554.
  • LI J, YEN C, LIAW D et al.: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science (1997) 275(5308):1943-1947.
  • FURUKAWA T, FUJISAKI R, YOSHIDA Y et al.: Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. (2005) 18(8):1034-1042.
  • XU S, FURUKAWA T, KANAI N, SUNAMURA M, HORII A: Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J. Hum. Genet. (2005) 50(4):159-167.
  • NICHOLSON RI, GEE JM, HARPER ME: EGFR and cancer prognosis. Eur. J. Cancer (2001) 37(Suppl. 4):S9-S15.
  • PANICO L, D'ANTONIO A, SALVATORE G et al.: Differential immunohistochemical detection of transforming growth factor α, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int. J. Cancer (1996) 65(1):51-56.
  • RUSCH V, BASELGA J, CORDON-CARDO C et al.: Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. (1993) 53(10 Suppl.):2379-2385.
  • SALOMON DS, BRANDT R, CIARDIELLO F, NORMANNO N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. (1995) 19(3):183-232.
  • JOHNSTON JB, NAVARATNAM S, PITZ MW et al.: Targeting the EGFR pathway for cancer therapy. Curr. Med. Chem. (2006) 13(29):3483-3492.
  • GARLICH JR, SU JD, MILLER T et al.: Preclinical efficacy, safety, pharmacokinetics and pharmacodynamics of the targeted PI3 kinase inhibitor SF1126. Clin. Cancer Res. (2005) 11(24):S9153.
  • GEOERGER B, KERR K, TANG CB et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. (2001) 61(4):1527-1532.
  • FLAHERTY KT: Sorafenib in renal cell carcinoma. Clin. Cancer Res. (2007) 13(2 Part 2):S747-S752.
  • FUKUOKA M, YANO S, GIACCONE G et al.: Multi-institutional randomized Phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. (2003) 21(12):2237-2246.
  • KRIS MG, NATALE RB, HERBST RS et al.: Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA (2003) 290(16):2149-2158.
  • PEREZ-SOLER R, CHACHOUA A, HAMMOND LA et al.: Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J. Clin. Oncol. (2004) 22(16):3238-3247.
  • SHEPHERD FA, RODRIGUES PEREIRA J, CIULEANU T et al.: Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. (2005) 353(2):123-132.
  • LYNCH TJ, BELL DW, SORDELLA R et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. (2004) 350(21):2129-2139.
  • PAEZ JG, JANNE PA, LEE JC et al.: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (2004) 304(5676):1497-1500.
  • MOORE MJ, GOLDSTEIN D, HAMM J et al.: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a Phase III trial of the National cancer institute of Canada clinical trials group. J. Clin. Oncol. (2007) 25(15):1960-1966.
  • GEYER CE, FORSTER J, LINDQUIST D et al.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. (2006) 355(26):2733-2743.
  • MOY B, GOSS PE: Lapatinib: current status and future directions in breast cancer. Oncologist (2006) 11(10):1047-1057.
  • BERNIER J: Cetuximab in the treatment of head and neck cancer. Expert Rev. Anticancer Ther. (2006) 6(11):1539-1552.
  • GIUSTI RM, SHASTRI KA, COHEN MH, KEEGAN P, PAZDUR R: FDA drug approval summary: panitumumab (vectibixTM). Oncologist (2007) 12(5):577-583.
  • BLACKHALL F, RANSON M, THATCHER N: Where next for gefitinib in patients with lung cancer? Lancet Oncol. (2006) 7(6):499-507.
  • BLACK RA, RAUCH CT, KOZLOSKY CJ et al.: A metalloproteinase disintegrin that releases TNF-α from cells. Nature (1997) 385(6618):729-733.
  • MOSS ML, JIN SL, MILLA ME et al.: Cloning of a disintegrin metalloproteinase that processes precursor TNF-α. Nature (1997) 385(6618):733-736.
  • WHITE JM: ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. (2003) 15(5):598-606.
  • PESCHON JJ, SLACK JL, REDDY P et al.: An essential role for ectodomain shedding in mammalian development. Science (1998) 282(5392):1281-1284.
  • LUETTEKE NC, QIU TH, PEIFFER RL et al.: TGF-α deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell (1993) 73(2):263-278.
  • MANN GB, FOWLER KJ, GABRIEL A et al.: Mice with a null mutation of the TGF-α gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell (1993) 73(2):249-261.
  • JACKSON LF, QIU TH, SUNNARBORG SW et al.: Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. (2003) 22(11):2704-2716.
  • SAHIN U, WESKAMP G, KELLY K et al.: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. (2004) 164(5):769-779.
  • STERNLICHT MD, SUNNARBORG SW, KOUROS-MEHR H et al.: Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development (2005) 132(17):3923-3933.
  • GSCHWIND A, HART S, FISCHER OM, ULLRICH A: TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J. (2003) 22(10):2411-2421.
  • ZHANG Q, THOMAS SM, LUI VW et al.: Phosphorylation of TNF-α converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc. Natl. Acad. Sci. USA (2006) 103(18):6901-6906.
  • SOOND SM, EVERSON B, RICHES DW, MURPHY G: ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci. (2005) 118(Part 11):2371-2380.
  • FRANOVIC A, ROBERT I, SMITH K et al.: Multiple acquired renal carcinoma tumor capabilities abolished upon silencing of ADAM17. Cancer Res. (2006) 66(16):8083-8090.
  • KENNY PA, BISSELL MJ: Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. (2007) 117(2):337-345.
  • KENNY PA: Three-dimensional extracellular matrix culture models of EGFR signalling and drug response. Biochem. Soc. Trans. (2007) 35(Part 4):665-668.
  • KENNY PA, BISSELL MJ: Tumor reversion: correction of malignant behavior by microenvironmental cues. Int. J. Cancer (2003) 107(5):688-695.
  • LEE GY, KENNY PA, LEE EH, BISSELL MJ: Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods (2007) 4(4):359-365.
  • VAN DE VIJVER MJ, HE YD, VAN'T VEER LJ et al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. (2002) 347(25):1999-2009.
  • CAREY LA, PEROU CM, LIVASY CA et al.: Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA (2006) 295(21):2492-2502.
  • POTEMSKI P, KUSINSKA R, WATALA C et al.: Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology (2005) 69(6):478-485.
  • SORLIE T, PEROU CM, TIBSHIRANI R et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA (2001) 98(19):10869-10874.
  • VAN DE RIJN M, PEROU CM, TIBSHIRANI R et al.: Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. (2002) 161(6):1991-1996.
  • NIELSEN TO, HSU FD, JENSEN K et al.: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. (2004) 10(16):5367-5374.
  • RAKHA EA, EL-SAYED ME, GREEN AR et al.: Prognostic markers in triple-negative breast cancer. Cancer (2007) 109(1):25-32.
  • LIOTTA LA, TRYGGVASON K, GARBISA S et al.: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature (1980) 284(5751):67-68.
  • VIHINEN P, KAHARI VM: Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer (2002) 99(2):157-166.
  • DAVIES B, BROWN PD, EAST N, CRIMMIN MJ, BALKWILL FR: A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. (1993) 53(9):2087-2091.
  • LOW JA, JOHNSON MD, BONE EA, DICKSON RB: The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin. Cancer Res. (1996) 2(7):1207-1214.
  • SLEDGE GW Jr, QULALI M, GOULET R, BONE EA, FIFE R: Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J. Natl. Cancer Inst. (1995) 87(20):1546-1550.
  • WANG X, FU X, BROWN PD, CRIMMIN MJ, HOFFMAN RM: Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res. (1994) 54(17):4726-4728.
  • WATSON SA, MORRIS TM, COLLINS HM et al.: Inhibition of tumour growth by marimastat in a human xenograft model of gastric cancer: relationship with levels of circulating CEA. Br. J. Cancer (1999) 81(1):19-23.
  • SANTOS O, MCDERMOTT CD, DANIELS RG, APPELT K: Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metast. (1997) 15(5):499-508.
  • LEIN M, JUNG K, LE DK et al.: Synthetic inhibitor of matrix metalloproteinases (batimastat) reduces prostate cancer growth in an orthotopic rat model. Prostate (2000) 43(2):77-82.
  • BERGERS G, JAVAHERIAN K, LO KM, FOLKMAN J, HANAHAN D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science (1999) 284(5415):808-812.
  • RASMUSSEN HS, MCCANN PP: Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol. Ther. (1997) 75(1):69-75.
  • ROWINSKY EK, HUMPHREY R, HAMMOND LA et al.: Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 12-9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J. Clin. Oncol. (2000) 18(1):178-186.
  • POULAKI V: BMS-275291. Bristol-Myers Squibb. Curr. Opin Investig. Drugs (2002) 3(3):500-504.
  • COUSSENS LM, FINGLETON B, MATRISIAN LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science (2002) 295(5564):2387-2392.
  • ZUCKER S, CAO J, CHEN WT: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene (2000) 19(56):6642-6650.
  • BECK G, BOTTOMLEY G, BRADSHAW D et al.: (E)-2(R)-[1(S)-(Hydroxycarbamoyl)-4-phenyl-3-butenyl]-2′-isobutyl-2′-(methanesulfonyl)-4-methylvalerohydrazide (Ro 32-7315), a selective and orally active inhibitor of TNF-α convertase. J. Pharmacol. Exp. Ther. (2002) 302(1):390-396.
  • ZHANG Y, XU J, LEVIN J et al.: Identification and characterization of 4-[[4-(2-butynyloxy)phenyl]sulfonyl]-N-hydroxy-2,2-dimethyl-(3S)thiomorpho linecarboxamide (TMI-1), a novel dual TNF-α-converting enzyme/matrix metalloprotease inhibitor for the treatment of rheumatoid arthritis. J. Pharmacol. Exp. Ther. (2004) 309(1):348-355.
  • ZHANG Y, HEGEN M, XU J et al.: Characterization of (2R,3S)-2-({[4-(2butynyloxy)phenyl]sulfonyl}amino)-N, 3-dihydroxybutanamide, a potent and selective inhibitor of TNF-α converting enzyme. Int. Immunopharmacol. (2004) 4(14):1845-1857.
  • CONWAY JG, ANDREWS RC, BEAUDET B et al.: Inhibition of tumor necrosis factor-α (TNF-α) production and arthritis in the rat by GW3333, a dual inhibitor of TNF-α-converting enzyme and matrix metalloproteinases. J. Pharmacol. Exp. Ther. (2001) 298(3):900-908.
  • YAO W, ZHUO J, BURNS DM et al.: Discovery of a potent, selective, and orally active human epidermal growth factor receptor-2 sheddase inhibitor for the treatment of cancer. J. Med. Chem. (2007) 50(4):603-606.
  • ZHOU BB, PEYTON M, HE B et al.: Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell (2006) 10(1):39-50.
  • LIU X, FRIDMAN JS, WANG Q et al.: Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol. Ther. (2006) 5(6):648-656.
  • FRIDMAN JS, CAULDER E, HANSBURY M et al.: Selective inhibition of ADAM metalloproteases as a movel approach for modulating ErbB pathways in cancer. Clin. Cancer Res. (2007) 13(6):1892-1902.
  • CHERNEY RJ, KING BW, GILMORE JL et al.: Conversion of potent MMP inhibitors into selective TACE inhibitors. Bioorg. Med. Chem. Lett. (2006) 16(4):1028-1031.
  • GOURLEY IS, O'TOOLE M, KIRSCH T, GAYLORD S, FATENEJAD S: Lack of efficacy of TMI-005 (apratastat) in patients with active RA on a background of methotrexate. Inflamm. Res. (2006) 55:S99-S100.
  • THABET MM, HUIZINGA TW: Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr. Opin. Investig. Drugs (2006) 7(11):1014-1019.
  • SCHERLE P, LIU X, LI J et al.: Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. J. Clin. Oncol. (2006) 24(18S):13021.
  • SMOLEN JS, STEINER G: Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. (2003) 2(6):473-488.
  • SLAMON DJ, CLARK GM, WONG SG et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (1987) 235(4785):177-182.
  • CIARDIELLO F, TROIANI T, CAPUTO F et al.: Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br. J. Cancer (2006) 94(11):1604-1609.
  • POLYCHRONIS A, SINNETT HD, HADJIMINAS D et al.: Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled Phase II randomised trial. Lancet Oncol. (2005) 6(6):383-391.
  • BASELGA J, ALBANELL J, RUIZ A et al.: Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol. (2005) 23(23):5323-5333.
  • VON MINCKWITZ G, JONAT W, FASCHING P et al.: A multicentre Phase II study on gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res. Treat. (2005) 89(2):165-172.
  • FLETCHER L: MMPI demise spotlights target choice. Nat. Biotechnol. (2000) 18:1138-1139.
  • PAGE-MCCAW A, EWALD AJ, WERB Z: Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. (2007) 8(3):221-233.
  • OVERALL CM, KLEIFELD O: Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer (2006) 6(3):227-239.
  • ENGELMAN JA, ZEJNULLAHU K, MITSUDOMI T et al.: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science (2007) 316(5827):1039-1043.
  • SERGINA NV, RAUSCH M, WANG D et al.: Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature (2007) 445(7126):437-441.
  • ARTEAGA CL, BASELGA J: Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them? Cancer Cell (2004) 5(6):525-531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.