687
Views
69
CrossRef citations to date
0
Altmetric
Review

Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis

, PhD, , BSc & , MD PhD
Pages 1415-1428 | Published online: 26 Oct 2007

Bibliography

  • ROSEN DR, SIDDIQUE T, PATTERSON D et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature (1993) 362:59-62.
  • CHANCELLOR AM, WARLOW CP: Adult onset motor neuron disease: worldwide mortality, incidence and distribution since 1950. J. Neurol. Neurosurg. Psychiatry (1992) 55:1106-1115.
  • ARUNDINE M, TYMIANSKI M: Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium (2003) 34:325-337.
  • LIPTON SA, ROSENBERG PA: Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. (1994) 330:613-622.
  • TAPIA R, MEDINA-CEJA L, PEÑA F: On the relationship between extracellular glutamate, hyperexcitation and neurodegeneration, in vivo. Neurochem. Int. (1999) 34:23-31.
  • MELDRUM BS: Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. (2000) 130:S1007-S1015.
  • BOILLEE S, VANDE VELDE C, CLEVELAND DW: ALS: a disease of motor neurons and their non-neuronal neighbors. Neuron (2006) 52:39-59.
  • ROWLAND LP, SHNEIDER NA: Amyotrophic lateral sclerosis. N. Engl. J. Med. (2001) 344:1688-1700.
  • BRUIJN LI, MILLER TM, CLEVELAND DW: Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. (2004) 27:723-749.
  • JULIEN JP: Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell (2001) 104:581-591.
  • SHAW PJ: Molecular and cellular pathways of neurodegeneration in motor neurone disease. J. Neurol. Neurosurg. Psychiatry (2005) 76:1046-1057.
  • HOLLMANN M, HEINEMANN S: Cloned glutamate receptors. Annu. Rev. Neurosci. (1994) 17:31-108.
  • BETTLER B, MULLE C: Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology (1995) 34:123-139.
  • PIN JP, DUVOISIN R: The metabotropic glutamate receptors: structure and functions. Neuropharmacology (1995) 34:1-26.
  • KANNER BI: Ion-coupled neurotransmitter transport. Curr. Opin. Cell Biol. (1989) 1:735-738.
  • GADEA A, LOPEZ-COLOME AM: Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J. Neurosci. Res. (2001) 63:453-460.
  • DANBOLT NC: Glutamate uptake. Prog. Neurobiol. (2001) 65:1-105.
  • TANAKA K, WATASE K, MANABE T et al.: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science (1997) 276:1699-1702.
  • ROTHSTEIN JD, MARTIN LJ, KUNCL RW: Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. (1992) 326:1464-1468.
  • ROTHSTEIN JD, VAN KAMMEN M, LEVEY AI, MARTIN LJ, KUNCL RW: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. (1995) 38:73-84.
  • SHAW PJ, FORREST V, INCE PG, RICHARDSON JP, WASTELL HJ: CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration (1995) 4:209-216.
  • SPREUX-VAROQUAUX O, BENSIMON G, LACOMBLEZ L et al.: Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J. Neurol. Sci. (2002) 193:73-78.
  • CORONA JC, TAPIA R: AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J. Neurochem. (2004) 89:988-997.
  • TOVAR-Y-ROMO LB, TAPIA R: Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Exp. Neurol. (2006) 199:281-290.
  • AYALA GX, TAPIA R: Late N-methyl-D-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur. J. Neurosci. (2005) 22:3067-3076.
  • AYALA GX, TAPIA R: Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology (2003) 45:649-660.
  • PEÑA F, TAPIA R: Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience (2000) 101:547-561.
  • HUME RI, DINGLEDINE R, HEINEMANN SF: Identification of a site in glutamate receptor subunits that controls calcium permeability. Science (1991) 253:1028-1031.
  • HOLLMANN M, HARTLEY M, HEINEMANN S: Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science (1991) 252:851-853.
  • BURNASHEV N, MONYER H, SEEBURG PH, SAKMANN B: Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron (1992) 8:189-198.
  • CHOI DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron (1988) 1:623-634.
  • COYLE JT, PUTTFARCKEN P: Oxidative stress, glutamate, and neurodegenerative disorders. Science (1993) 262:689-695.
  • CELIO MR: Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience (1990) 35:375-475.
  • PALECEK J, LIPS MB, KELLER BU: Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J. Physiol. (1999) (520 Part 2):485-502.
  • INCE P, STOUT N, SHAW P et al.: Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. (1993) 19:291-299.
  • ALEXIANU ME, HO BK, MOHAMED AH et al.: The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. (1994) 36:846-858.
  • SASAKI S, WARITA H, KOMORI T et al.: Parvalbumin and calbindin D-28k immunoreactivity in transgenic mice with a G93A mutant SOD1 gene. Brain Res. (2006) 1083:196-203.
  • SIKLÓS L, ENGELHARDT JI, ALEXIANU ME et al.: Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J. Neuropathol. Exp. Neurol. (1998) 57:571-587.
  • GROSSKREUTZ J, HAASTERT K, DEWIL M et al.: Role of mitochondria in kainate-induced fast Ca2+ transients in cultured spinal motor neurons. Cell Calcium (2007) 42:59-69.
  • JAHN K, GROSSKREUTZ J, HAASTERT K et al.: Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons. Neuroscience (2006) 142:1019-1029.
  • CARRIEDO SG, YIN HZ, WEISS JH: Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J. Neurosci. (1996) 16:4069-4079.
  • WILLIAMS TL, DAY NC, INCE PG, KAMBOJ RK, SHAW PJ: Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. (1997) 42:200-207.
  • VAN DEN BOSCH L, VANDENBERGHE W, KLAASSEN H, VAN HOUTTE E, ROBBERECHT W: Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J. Neurol. Sci. (2000) 180:29-34.
  • GREIG A, DONEVAN SD, MUJTABA TJ, PARKS TN, RAO MS: Characterization of the AMPA-activated receptors present on motoneurons. J. Neurochem. (2000) 74:179-191.
  • VAN DAMME P, VAN DEN BOSCH L, VAN HOUTTE E, CALLEWAERT G, ROBBERECHT W: GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J. Neurophysiol. (2002) 88:1279-1287.
  • TOMIYAMA M, RODRIGUEZ-PUERTAS R, CORTES R et al.: Differential regional distribution of AMPA receptor subunit messenger RNAs in the human spinal cord as visualized by in situ hybridization. Neuroscience (1996) 75:901-915.
  • VIRGO L, SAMARASINGHE S, DE BELLEROCHE J: Analysis of AMPA receptor subunit mRNA expression in control and ALS spinal cord. Neuroreport (1996) 7:2507-2511.
  • BAR-PELED O, O'BRIEN RJ, MORRISON JH, ROTHSTEIN JD: Cultured motor neurons possess calcium-permeable AMPA/kainate receptors. Neuroreport (1999) 10:855-859.
  • KAWAHARA Y, KWAK S, SUN H et al.: Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J. Neurochem. (2003) 85:680-689.
  • TAKUMA H, KWAK S, YOSHIZAWA T, KANAZAWA I: Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann. Neurol. (1999) 46:806-815.
  • KAWAHARA Y, ITO K, SUN H et al.: Glutamate receptors: RNA editing and death of motor neurons. Nature (2004) 427:801.
  • KWAK S, KAWAHARA Y: Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J. Mol. Med. (2005) 83:110-120.
  • KAWAHARA Y, SUN H, ITO K et al.: Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA. Neurosci. Res. (2006) 54:11-14.
  • GURNEY ME, PU H, CHIU AY et al.: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (1994) 264:1772-1775.
  • NAGAI M, AOKI M, MIYOSHI I et al.: Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J. Neurosci. (2001) 21:9246-9254.
  • HOWLAND DS, LIU J, SHE Y et al.: Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA (2002) 99:1604-1609.
  • KOIKE M, IINO M, OZAWA S: Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci. Res. (1997) 29:27-36.
  • NOH KM, YOKOTA H, MASHIKO T et al.: Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl. Acad. Sci. USA (2005) 102:12230-12235.
  • YIN HZ, SENSI SL, OGOSHI F, WEISS JH: Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J. Neurosci. (2002) 22:1273-1279.
  • CORONA JC, TAPIA R: Ca2+-permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo. Neuropharmacology (2007) 52:1219-1228.
  • TOVAR-Y-ROMO LB, ZEPEDA A, TAPIA R: Vascular endothelial growth factor prevents paralysis and motoneuron death in a rat model of excitotoxic spinal cord neurodegeneration. J. Neuropathol. Exp. Neurol. (2007) 66:913-922.
  • DOBLE A: The pharmacology and mechanism of action of riluzole. Neurology (1996) 47:S233-S241.
  • LACOMBLEZ L, BENSIMON G, LEIGH PN, GUILLET P, MEININGER V: Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet (1996) 347:1425-1431.
  • BENSIMON G, LACOMBLEZ L, MEININGER V: A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/riluzole study group. N. Engl. J. Med. (1994) 330:585-591.
  • BENSIMON G, LACOMBLEZ L, DELUMEAU JC et al.: A study of riluzole in the treatment of advanced stage or elderly patients with amyotrophic lateral sclerosis. J. Neurol. (2002) 249:609-615.
  • LACOMBLEZ L, BENSIMON G, LEIGH PN et al.: Long-term safety of riluzole in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. (2002) 3:23-29.
  • GURNEY ME, CUTTING FB, ZHAI P et al.: Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. (1996) 39:147-157.
  • KUO JJ, SIDDIQUE T, FU R, HECKMAN CJ: Increased persistent Na+ current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J. Physiol. (2005) 563:843-854.
  • SKRADSKI S, WHITE HS: Topiramate blocks kainate-evoked cobalt influx into cultured neurons. Epilepsia (2000) 41:S45-S47.
  • MARAGAKIS NJ, JACKSON M, GANEL R, ROTHSTEIN JD: Topiramate protects against motor neuron degeneration in organotypic spinal cord cultures but not in G93A SOD1 transgenic mice. Neurosci. Lett. (2003) 338:107-110.
  • CUDKOWICZ ME, SHEFNER JM, SCHOENFELD DA et al.: A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology (2003) 61:456-464.
  • LANGAN YM, LUCAS R, JEWELL H et al.: Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia (2003) 44:46-53.
  • ROTHSTEIN JD, PATEL S, REGAN MR et al.: β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature (2005) 433:73-77.
  • PARDO AC, WONG V, BENSON LM et al.: Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp. Neurol. (2006) 201:120-130.
  • VON LEWINSKI F, KELLER BU: Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. (2005) 28:494-500.
  • MANFREDI G, XU Z: Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion (2005) 5:77-87.
  • MENZIES FM, INCE PG, SHAW PJ: Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem. Int. (2002) 40:543-551.
  • SWERDLOW RH, PARKS JK, CASSARINO DS et al.: Mitochondria in sporadic amyotrophic lateral sclerosis. Exp. Neurol. (1998) 153:135-142.
  • KLIVENYI P, FERRANTE RJ, MATTHEWS RT et al.: Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. (1999) 5:347-350.
  • ZHANG W, NARAYANAN M, FRIEDLANDER RM: Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol. (2003) 53:267-270.
  • PARK JH, HONG YH, KIM HJ et al.: Pyruvate slows disease progression in a G93A SOD1 mutant transgenic mouse model. Neurosci. Lett. (2007) 413:265-269.
  • SHEFNER JM, CUDKOWICZ ME, SCHOENFELD D et al.: A clinical trial of creatine in ALS. Neurology (2004) 63:1656-1661.
  • MATTHEWS RT, YANG L, BROWNE S, BAIK M, BEAL MF: Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA (1998) 95:8892-8897.
  • LEVY G, KAUFMANN P, BUCHSBAUM R et al.: A two-stage design for a Phase II clinical trial of coenzyme Q10 in ALS. Neurology (2006) 66:660-663.
  • FERRANTE KL, SHEFNER J, ZHANG H et al.: Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS. Neurology (2005) 65:1834-1836.
  • CARRIEDO SG, SENSI SL, YIN HZ, WEISS JH: AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci. (2000) 20:240-250.
  • RAO SD, YIN HZ, WEISS JH: Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci. (2003) 23:2627-2633.
  • ABE K, PAN LH, WATANABE M et al.: Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol. Res. (1997) 19:124-128.
  • BEAL MF, FERRANTE RJ, BROWNE SE et al.: Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. (1997) 42:644-654.
  • FERRANTE RJ, BROWNE SE, SHINOBU LA et al.: Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. (1997) 69:2064-2074.
  • SHAW PJ, INCE PG, FALKOUS G, MANTLE D: Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. (1995) 38:691-695.
  • BOGDANOV M, BROWN RH, MATSON W et al.: Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. (2000) 29:652-658.
  • DESNUELLE C, DIB M, GARREL C, FAVIER A: A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol study group. Amyotroph. Lateral Scler. Other Motor Neuron Disord. (2001) 2:9-18.
  • GRAF M, ECKER D, HOROWSKI R et al.: High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J. Neural. Transm. (2005) 112:649-660.
  • LOUWERSE ES, WEVERLING GJ, BOSSUYT PM, MEYJES FE, DE JONG JM: Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol. (1995) 52:559-564.
  • ANDREASSEN OA, DEDEOGLU A, KLIVENYI P, BEAL MF, BUSH AI: N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport (2000) 11:2491-2493.
  • LANGE DJ, MURPHY PL, DIAMOND B et al.: Selegiline is ineffective in a collaborative double-blind, placebo-controlled trial for treatment of amyotrophic lateral sclerosis. Arch. Neurol. (1998) 55:93-96.
  • CROW JP, CALINGASAN NY, CHEN J, HILL JL, BEAL MF: Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann. Neurol. (2005) 58:258-265.
  • ORRELL RW: AEOL-10150 (Aeolus). Curr. Opin. Investig. Drugs (2006) 7:70-80.
  • KOTZBAUER PT, HOLTZMAN DM: Expectations and challenges in the therapeutic use of neurotrophic factors. Ann. Neurol. (2006) 59:444-447.
  • SENDTNER M, SCHMALBRUCH H, STOCKLI KA et al.: Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature (1992) 358:502-504.
  • MITSUMOTO H, IKEDA K, HOLMLUND T et al.: The effects of ciliary neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol. (1994) 36:142-148.
  • A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF treatment study group. Neurology (1996) 46:1244-1249.
  • A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF study group (Phase III). Neurology (1999) 52:1427-1433.
  • BORASIO GD, ROBBERECHT W, LEIGH PN et al.: A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I study group. Neurology (1998) 51:583-586.
  • LAI EC, FELICE KJ, FESTOFF BW et al.: Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I study group. Neurology (1997) 49:1621-1630.
  • AZZOUZ M, RALPH GS, STORKEBAUM E et al.: VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature (2004) 429:413-417.
  • KASPAR BK, LLADO J, SHERKAT N, ROTHSTEIN JD, GAGE FH: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science (2003) 301:839-842.
  • WANG LJ, LU YY, MURAMATSU S et al.: Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurosci. (2002) 22:6920-6928.
  • STORKEBAUM E, LAMBRECHTS D, DEWERCHIN M et al.: Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. (2005) 8:85-92.
  • WANG Y, MAO XO, XIE L et al.: Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J. Neurosci. (2007) 27:304-307.
  • ZHENG C, NENNESMO I, FADEEL B, HENTER JI: Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. (2004) 56:564-567.
  • OOSTHUYSE B, MOONS L, STORKEBAUM E et al.: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. (2001) 28:131-138.
  • LAMBRECHTS D, STORKEBAUM E, MORIMOTO M et al.: VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. (2003) 34:383-394.
  • LI B, XU W, LUO C, GOZAL D, LIU R: VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Mol. Brain Res. (2003) 111:155-164.
  • NEWBERN J, TAYLOR A, ROBINSON M, LI L, MILLIGAN CE: Decreases in phosphoinositide-3-kinase/Akt and extracellular signal-regulated kinase 1/2 signaling activate components of spinal motoneuron death. J. Neurochem. (2005) 94:1652-1665.
  • YU F, SUGAWARA T, MAIER CM, HSIEH LB, CHAN PH: Akt/Bad signaling and motor neuron survival after spinal cord injury. Neurobiol. Dis. (2005) 20:491-499.
  • MATSUZAKI H, TAMATANI M, YAMAGUCHI A et al.: Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. Faseb J. (2001) 15:1218-1220.
  • BROWN RH Jr: Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr. Opin. Neurobiol. (1995) 5:841-846.
  • REAUME AG, ELLIOTT JL, HOFFMAN EK et al.: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. (1996) 13:43-47.
  • RALPH GS, RADCLIFFE PA, DAY DM et al.: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med. (2005) 11:429-433.
  • RAOUL C, ABBAS-TERKI T, BENSADOUN JC et al.: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. (2005) 11:423-428.
  • XIA X, ZHOU H, HUANG Y, XU Z: Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol. Dis. (2006) 23:578-586.
  • SCHWARZ DS, DING H, KENNINGTON L et al.: Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. (2006) 2:E140.
  • XIA XG, ZHOU H, ZHOU S et al.: An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase. J. Neurochem. (2005) 92:362-367.
  • URUSHITANI M, SIK A, SAKURAI T et al.: Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat. Neurosci. (2006) 9:108-118.
  • TURNER BJ, ATKIN JD, FARG MA et al.: Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J. Neurosci. (2005) 25:108-117.
  • URUSHITANI M, EZZI SA, JULIEN JP: Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA (2007) 104:2495-2500.
  • HENKEL JS, ENGELHARDT JI, SIKLOS L et al.: Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. (2004) 55:221-235.
  • KAWAMATA T, AKIYAMA H, YAMADA T, MCGEER PL: Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Pathol. (1992) 140:691-707.
  • TURNER MR, CAGNIN A, TURKHEIMER FE et al.: Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. (2004) 15:601-609.
  • HENKEL JS, BEERS DR, SIKLOS L, APPEL SH: The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol. Cell Neurosci. (2006) 31:427-437.
  • SARGSYAN SA, MONK PN, SHAW PJ: Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia (2005) 51:241-253.
  • WEST M, MHATRE M, CEBALLOS A et al.: The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor α activation of microglia and extends survival of G93A-SOD1 transgenic mice. J. Neurochem. (2004) 91:133-143.
  • YRJANHEIKKI J, TIKKA T, KEINANEN R et al.: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Sci. USA (1999) 96:13496-13500.
  • TIKKA TM, VARTIAINEN NE, GOLDSTEINS G et al.: Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain (2002) 125:722-731.
  • KRIZ J, NGUYEN MD, JULIEN JP: Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. (2002) 10:268-278.
  • VAN DEN BOSCH L, TILKIN P, LEMMENS G, ROBBERECHT W: Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport (2002) 13:1067-1070.
  • ZHU S, STAVROVSKAYA IG, DROZDA M et al.: Minocycline inhibits cytochrome C release and delays progression of amyotrophic lateral sclerosis in mice. Nature (2002) 417:74-78.
  • SATHASIVAM S, GRIERSON AJ, SHAW PJ: Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol. Appl. Neurobiol. (2005) 31:467-485.
  • SHOEMAKER JL, SEELY KA, REED RL, CROW JP, PRATHER PL: The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J. Neurochem. (2007) 101:87-98.
  • LINO MM, SCHNEIDER C, CARONI P: Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. (2002) 22:4825-4832.
  • PRAMATAROVA A, LAGANIERE J, ROUSSEL J, BRISEBOIS K, ROULEAU GA: Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. (2001) 21:3369-3374.
  • GONG YH, PARSADANIAN AS, ANDREEVA A, SNIDER WD, ELLIOTT JL: Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. (2000) 20:660-665.
  • VANDENBERGHE W, VAN DEN BOSCH L, ROBBERECHT W: Glial cells potentiate kainate-induced neuronal death in a motoneuron-enriched spinal coculture system. Brain Res. (1998) 807:1-10.
  • DI GIORGIO FP, CARRASCO MA, SIAO MC, MANIATIS T, EGGAN K: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. (2007) 10:608-614.
  • NAGAI M, RE DB, NAGATA T et al.: Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. (2007) 10:615-622.
  • CLEMENT AM, NGUYEN MD, ROBERTS EA et al.: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science (2003) 302:113-117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.