114
Views
14
CrossRef citations to date
0
Altmetric
Review

S-Alkylthiolation of O6-methylguanine-DNA-methyltransferase (MGMT) to sensitize cancer cells to anticancer therapy

&
Pages 349-361 | Published online: 14 Feb 2007

Bibliography

  • DANIELS DS, MOL CD, ARVAI AS, KANUGULA S, PEGG AE, TAINER JA: Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. (2000) 19:1719-1730.
  • FANG Q, KANUGULA S, PEGG AE: Function of the domains of human O6-alkylguanine-DNA alkyltransferase. Biochemistry (2005) 44:15396-15405.
  • BEGLEY TJ, SAMSON LD: Reversing DNA damage with a directional bias. Nat. Struct. Mol. Biol. (2004) 11:688-690.
  • DANIELS DS, WOO TT, LUU KX et al.: DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat. Struct. Mol. Biol. (2004) 11:714-720.
  • GUZZA R, RAJESH M, FANG Q, PEGG AE, TRETYAKOVA N: Kinetics of the O6-methyl-2′-deoxyguanosine repair by O6-alkylguanine DNA alkyltransferase within K-ras gene-derived DNA sequences. Chem. Res. Toxicol. (2006) 19:531-538.
  • RASIMAS JJ, PEGG AE, FRIED MG: DNA-binding mechanism of O6-alkylguanine-DNA alkyltransferase. Effects of protein and DNA alkylation on complex stability. J. Biol. Chem. (2003) 278:7973- 7980.
  • ZANG H, FANG Q, PEGG AE, GUENGERICH FP: Kinetic analysis of steps in the repair of damaged DNA by human O6-alkylguanine-DNA alkyltransferase. J. Biol. Chem. (2005) 280:30873-30881.
  • LOEBER R, RAJESH M, FANG Q, PEGG AE, TRETYAKOVA N: Cross-linking of the human DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of 1,2,3,4-diepoxybutane. Chem. Res. Toxicol. (2006) 19:645-654.
  • RASIMAS JJ, DALESSIO PA, ROPSON IJ, PEGG AE, FRIED MG: Active-site alkylation destabilizes human O6-alkylguanine-DNA alkyltransferase. Prot. Sci. (2004) 13:301-305.
  • PORS K, PATTERSON LH: DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents. Curr. Topics Med. Chem. (2005) 5:113-1149.
  • PEGG AE, DOLAN ME, MOSCHEL RC: Structure, function and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog. Nuc. Acid Res. Mol. Biol. (1995) 51:167-223.
  • PEGG AE: DNA repair pathways and cancer prevention. Adv. Exp. Med. Biol. (1999) 472:253-267.
  • PEGG AE: Repair of O6-alkylguanine by alkyltransferases. Mut. Res. (2000) 462:83-100.
  • SANCAR A, LINDSEY-BOLTZ LA, ÜNSAL-KAÇMAZ K, LINN S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann. Rev. Biochem. (2004) 73:39-85.
  • MISHINA Y, HE C: Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J. Inorg. Biochem. (2006) 100:670-678.
  • EMMONS M, BOULWARE D, SULLIVAN DM, HAZELHURST LA: Topoisomerase II beta levels are a determinant of melphalan-induced DNA crosslinks and sensitivity to cell death. Biochem. Pharmacol. (2006) 72:11-18.
  • GERSON SL: MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer (2004) 4:296-307.
  • JAECKLE KA, EYRE HJ, TOWNSEND JJ et al.: Correlation of tumor O6 methylguanine-DNA methyl transferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J. Clin. Oncol. (1998) 16:3310-3315.
  • KAINA B, CHRISTMANN M: DNA repair in resistance to alkylating anticancer drugs. Int. J. Clin. Pharm. Ther. (2002) 40:354-367.
  • LIU L, GERSON SL: Targeted modulation of MGMT: clinical implications. Clin. Cancer Res. (2006) 12:328-331.
  • RABIK CA, NJOKU MC, DOLAN ME: Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat. Rev. (2006) 32:261-276.
  • VAN DEN BENT MJ, HEGI ME, STUPP R: Recent development in the use of chemotherapy in brain tumors. Eur. J. Cancer (2006) 42:582-588.
  • ZONG WX, DITSWORTH D, BAUER DE, WANG ZQ, THOMPSON CB: Alkylating DNA damage stimulates a regulated form of necrotic cell death. Gene Dev. (2004) 18:1272-1282.
  • MIJAL RS, KANUGULA S, VU CC, FANG Q, PEGG AE, PETERSON LA: DNA sequence context affects repair of the tobacco-specific adduct O6-[4-oxo-4-(3-pyridyl)butyl]guanine by human O6-alkylguanine-DNA alkyltransferases. Cancer Res. (2006) 66:4968-4974.
  • JACKSON PE, COOPER DP, MEYER TA, WOOD M, POVEY AC, MARGISON GP: Formation and persistence of O6-methylguanine in the mouse colon following treatment with 1,2-dimethylhydrazine as measured by an O6-alkylguanine-DNA alkyltransferase inactivation assay. Toxicol. Lett. (2000) 115:205-212.
  • LIU L, HACHEY DL, VALADEZ G et al.: Characterization of a mutagenic DNA adduct formed from 1,2-dibromoethane by O6-alkylguanine-DNA alkyltransferase. J. Biol. Chem. (2004) 279:4250-4259.
  • LIU L, WILLIAMS KM, GUENGERICH FP, PEGG AE: O6-alkylguanine-DNA alkyltransferase has opposing effects in modulating the genotoxicity of dibromomethane and bromomethyl acetate. Chem. Res. Toxicol. (2004) 17:742-752.
  • VALADEZ JG, LIU L, LOKTIONOVA NA, PEGG AE, GUENGERICH FP: Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase. Chem. Res. Toxicol. (2004) 17:972-982.
  • ALI RB, TEO AKC, OH HK, CHUANG LSH, AYI TC, LI BFL: Implication of localization of human DNA repair enzyme O6-methylguanine-DNA methyltransferase at active transcription sites in transcription-repair coupling of the mutagenic O6-methylguanine lesion. Mol. Cell. Biol. (1998) 18:1660-1669.
  • BELANICH M, RANDALL T, PASTOR MA et al.: Intracellular localization and intercellular heterogeneity of the human DNA repair protein O6-methylguanine-DNA methyltransferase. Cancer Chemother. Pharmacol. (1996) 37:547-555.
  • MARGISON GP, POVEY AC, KAINA B, SANTIBANEZ KOREL MF: Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis (2005) 24:625-635.
  • ESTELLER M, GARCIA-FONCILLAS J, ANDION E et al.: Inactivation of the DNA repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. (2000) 343:1350-1354.
  • HENGSTLER JG, TANNER B, MÖLLER L et al.: Activity of O6-methylguanine-DNA methyltransferase in relation to p53 status and therapeutic response in ovarian cancer. Int. J. Cancer (1999) 84:388-395.
  • TRUDEAU ME, CRUMP M, CHARPENTIER D et al.: Temozolomide in metastatic breast cancer (MBC): a Phase II trial of the National Cancer Institute of Canada – Clinical Trials Group (NCIC-CTG). Ann. Oncol. (2006) 17:952-956, 2006.
  • ANDERSON S, AGHAJANIAN C: Temozolomide in uterine leiomyosarcomas. Gyn. Oncol. (2005) 98:99-103.
  • KOKKINAKIS DM, AHMED MM, CHENDIL D, MOSCHEL RC, PEGG AE: Sensitization of pancreatic tumor xenografts to carmustine and temozolomide by inactivation of their O6-methylguanine-DNA methyltransferase with O6-benzylguanine or O6-benzyl-2′-deoxyguanosine. Clin. Cancer Res. (2003) 9:3801-3807.
  • ESTELLER M: Aberrant DNA methylation as a cancer-inducing mechanism. Ann. Rev. Pharmocol. Toxicol. (2005) 45:629-656.
  • CHRISTMANN M, PICK M, LAGE H, SCHEDENDORF D, KAINA B: Acquired resistance of melanoma cells to the antineoplastic agent fotemustine in caused by reactivation of the DNA repair gene MGMT. Int. J. Cancer. (2001) 92:123-129.
  • SRIVENUGOPAL KS, MULLAPUDI SRS, SHOU J, HAZRA TK, ALI-OSMAN F: Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res. (2000) 60:282-287.
  • SRIVENUGOPAL KS, ALI-OSMAN F: The DNA repair protein O6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene (2002) 21:5940-5945.
  • ESTELLER M, CORN PG, BAYLIN SB, HERMAN JG: A gene hypermethylation profile of human cancer. Cancer Res. (2001) 61:3225-3229.
  • ESTELLER M, HAMILTON SR, BURGER PC, BAYLIN SB, HERMAN JG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. (1999) 59:793-797.
  • BERGER Y, CHAPUIS BERNASCONI C, JUILLERAT-JEANNERET L: Targeting the endothelin axis in human melanoma: combination of endothelin receptor antagonism and alkylating agents. Exp. Biol. Med. (2006) 231:111-119.
  • ROSAS SLB, KOCH W, CARVALHO MDD et al.: Promoter hypermethylation patterns of p16, O6-methylguanine-DNA methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. (2001) 61:939-942.
  • KIM SH, BAE SI, LEE HS, KIM WH: Alteration of O6-methylguanine-DNA methyltransferase in colorectal neoplasms in sporadic and familial adenomatous polyposis patients. Mol. Carcinogenesis (2003) 37:32-38.
  • MÜLLEMANN M, WOLTER M, FELSBERG J, COLLINS VP, REIFENSBERGER G: Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int. J. Cancer. (2005) 113:379-385.
  • HEGI ME, DISERENS AC, GODARD S et al.: Clinical trial substantiates the predictive value of O6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. (2004) 10:1871-1874.
  • HEGI ME, DISERENS AC, GORLIA T et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. (2005) 352:997-1003.
  • LIU L, SCHWARTZ S, DAVIS BM, GERSON SL: Chemotherapy-induced O6-benzylguanine-resistant alkyltransferase mutations in mismatch-deficient colon cancer. Cancer Res. (2002) 62:3070-3076.
  • QUIN JA, DESJARDINS A, WEINGART J et al.: Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J. Clin. Oncol. (2005) 23:7178-7187.
  • KREKLAU FL, LIU N, LI Z, CORNETTA K, ERICKSON LC: Comparison of single- versus double-bolus treatments of O6-benzylguanine for depletion of O6-methylguanine-DNA methyltransferase (MGMT) activity in vivo: development of a novel fluorometric oligonucleotide assay for the measurement of MGMT activity. J. Pharm. Exp. Ther. (2001) 297:524-530.
  • DOLAN ME, PEGG AE: O6-benzyl guanine and its role in chemotherapy. Clin. Cancer Res. (1997) 3:837-847.
  • REESE JS, KOÇ ON, LEE KM, ALLAY JA, PHILIPS WP, GERSON SL: Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1nitrosourea. Proc. Natl. Acad. Sci. USA (1996) 93:14088-14093.
  • GAJEWSKI TF, SOSMAN J, GERSON SL et al.: Phase II trial of the O6-alkylguanine DNA alkyltransferase inhibitor O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosurea in advanced melanoma. Clin. Cancer Res. (2005) 11:7861-7865.
  • JANSEN M, BARDENHEUER W, SORG UR, SEEBER S, FLASSHOVE M, MORITS T: Protection of hematopoietic cells from O6-alkylation damage by O6-methylguanine-DNA methyltransferase gene transfer:studies with different O6-alkylating agents and retroviral backbone. Eur. J. Hematol. (2001) 67:2-13.
  • WU M, KELLEY MR, HANSEN WK, MARTIN WJ: Reduction of BCNU toxicity to lung cells by high level expression of O6-methylguanine-DNA methyltransferase. Am. J. Physiol. (2001) 280:L755-L761.
  • FONTES AM, DAVIS BM, ENCELL LP et al.: Differential competitive resistance to methylating versus chloroethylating agents among five O6-alkylguanine DNA alkyltransferase in human hematopoietic cells. Mol. Cancer Ther. (2006) 5:121-128.
  • FENSKE TS, MCMAHON C, EDWIN D et al.: Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res. (2006) 66:5029-5038.
  • LEES NP, HARRISON KL, HALL CN, MARGISON GP, POVEY AC: Reduced MGMT activity in human colorectal adenomas is associated with K-ras GC to AT transition mutations in a population exposed to methylating agents. Carcinogenesis (2004) 25:1243-1247.
  • GONZAGA PE, BRENT TP: Affinity purification and characterization of human O6-alkylguanine-DNA-alkyltransferase complexed with BCNU-treated synthetic oligonucleotide. Nucleic Acids Res. (1989) 17:6581-6590.
  • BACOLOD MD, JOHNSON SP, PEGG AE et al.: Brain tumor cell lines resistant to O6-benzylguanine/ 1,3-bis(2-chloroethyl)-1-nitrosourea chemotherapy have O6-alkylguanine-DNA alkyltransferase mutations. Mol. Cancer Ther. (2004) 3:1127-1135.
  • XU-WELLIVER M, PEGG AE: Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine–DNA alkyltransferase insensitive to O6-benzylguanine. Biochem. J. (2000) 347:519–526.
  • JUILLERAT A, GRONEMEYER T, KEPPLER A et al.: Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem. Biol. (2003) 10:313-317.
  • JUILLERAT A, HEINIS C, SIELAFF I et al.: Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. ChemBioChem. (2005) 6:1-8.
  • GRONEMEYER T, CHIDLEY C, JUILLERAT A, HEINIS C, JOHNSSON K: Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Prot. Eng. Des. Select. (2006) 19:309-316.
  • KEPPLER A, KINDERMANN M, GENDREIZIG S, PICK H, VOGEL H, JOHNSSON K: Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods (2004) 22:437-444.
  • KEPPLER A, ARRIVOLI C, SIRONI L, ELLENBERG J: Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques (2006) 41:167-170, 172, 174-175.
  • KEPPLER A, PICK H, ARRIVOLI C, VOGEL H, JOHNSSON K: Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA (2004) 101:9955-9999.
  • KINDERMANN M, SIELAFF I, JOHNSSON K: Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins. Bioorg. Med. Chem. Lett. (2004) 14:2725-2728.
  • WEI G, LOKTIONOVA NA, PEGG AE, MOSCHEL RC: β-Glucuronidase-cleavable prodrug of O6-benzylguanine and O6-benzyl-2′deoxyguanosine. J. Med. Chem. (2005) 48:256-261.
  • GENDREIZIG S, KINDERMANN M, JOHNSSON K: Induced protein dimerization in vivo through covalent labeling. J. Am. Chem. Soc. (2003) 125:14970-14971.
  • NELSON ME, LOKTIONOVA NA, PEGG AE, MOSCHEL RC:2-Amino-O4-benzylpteridine derivatives: potent inactivators of O6-alkylguanine-DNA alkyltransferase. J. Med. Chem. (2004) 47:3887-3891.
  • REINHARD J, HULL WE, VON DER LIETH CW et al.: Monosaccharide-linked inhibitors of O6-methylguanine-DNA methyltransferase (MGMT): synthesis, molecular modeling and structure-activity relationship. J. Med. Chem. (2001) 44:4050-4061.
  • REINHARD J, EISCHHORN U, WIESSLER M, KAINA B: Inactivation of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors. Int. J. Cancer (2001) 93:373-379.
  • KAINA B, MUHLHAUSEN U, PIEE-STAFFA A et al.: Inhibition of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors: comparison with nonconjugated inhibitors and effect on fotemustine and temozolomide-induced cell death. J. Pharm. Exp. Ther. (2004) 311:585-593.
  • MUHLHAUSEN U, SCHIRRMACHER R, PIEL M et al.: Synthesis of 131I-labeled glucose-conjugated inhibitors of O6-methylguanine-DNA methyltransferase (MGMT) and comparison with nonconjugated inhibitors as potential tools for in vivo MGMT imaging. J. Med. Chem. (2006) 49:263-272.
  • KOCH D, HUNDSBERGER T, BOOR S, KAINA B: Local intracerebral administration of O6-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma. J. Neurooncol. (2006) In Press.
  • PARKER N, TURK MJ, WESTRICK E, LEWIS JD, LOW PS, LEAMON CP: Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. (2005) 338:284-293.
  • WU M, GUNNING W, RATNAM M: Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol. Biomarkers Prev. (1999) 8:775-782.
  • WEITMAN SD, LARK RH, CONEY LR et al.: Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. (1992) 52:3396-3401.
  • TOFFOLI G, CERNIGOI C, RUSSO A, GALLO A, BAGNOLI M, BOIOCCHI M: Overexpression of folate binding protein in ovarian cancers. Int. J. Cancer. (1997) 74:193-198.
  • SADASIVAN E, DA COSTA M, ROTHENBERG SP, BRINK L: Purification, properties, and immunological characterization of folate-binding proteins from human leukemia cells. Biochim. Biophys. Acta. (1987) 925:36-47.
  • SABHARANJAK S, MAYOR S: Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. (2004) 56:1099-1109.
  • ELNAKAT H, RATNAM M: Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. (2004) 56:1067-1084.
  • WOOLFORD LB, SOUTHGATE TD, MARGISON GP, MILSON MD, FAIRBAIRN LJ: The P140K mutant of human O6-methylguanine-DNA-methyltransferase (MGMT) confers resistance in vitro and in vivo to temozolomide in combination with the novel MGMT inactivator O6-(4-bromoethyl)guanine. J. Gene Med. (2006) 8:29-34.
  • PLETSAS D, WHEELHOUSE RT, PLETSA V, NICOLAOU A, JENKINS TC, BIBBY MC, KYRTOPOULOS SA: Polar, functionalized guanine-O6 derivatives resistant to repair by O6-alkylguanine-DNA alkyltransferase: implications for the design of DNA-modifying drugs. Eur. J. Med. Chem. (2006) 41:330-339.
  • IZBICKA E, TOLCHER AW: Development of novel alkylating drugs as anticancer agents. Curr. Opin. Invest. Drugs (2004) 5:587-591.
  • JUILLERAT-JEANNERET L, SCHMITT F: Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the Grail. Med. Res. Rev. (2006) In Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.