151
Views
31
CrossRef citations to date
0
Altmetric
Review

Therapeutic targets in the mitochondrial apoptotic pathway

&
Pages 515-526 | Published online: 20 Mar 2007

Bibliography

  • FISCHER U, SCHULZE-OSTHOFF K: New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev. (2005) 57(2):187-215.
  • BOUCHIER-HAYES L, LARTIGUE L, NEWMEYER DD: Mitochondria: pharmacological manipulation of cell death. J. Clin. Invest. (2005) 115(10):2640-2647.
  • NEWTON K, STRASSER A: Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling. Implications for cancer therapy. J. Exp. Med. (2000) 191(1):195-200.
  • MARRACK P, KAPPLER J: Control of T cell viability. Ann. Rev. Immunol. (2004) 22:765-787.
  • MARRACK P, KAPPLER J, KOTZIN BL: Autoimmune disease: why and where it occurs. Nat. Med. (2001) 7(8):899-905.
  • GRAHAM RK, DENG Y, SLOW EJ et al.: Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell (2006) 125(6):1179-1191.
  • BREDESEN DE, RAO RV, MEHLEN P: Cell death in the nervous system. Nature (2006) 443(7113):796-802.
  • KASHIWAGI H, MCDUNN JE, GOEDEGEBUURE PS et al.: TAT-Bim induces extensive apoptosis in cancer cells. Ann. Surg. Oncol. (2007) In Press.
  • LOGUE SE, GUSTAFSSON AB, SAMALI A, GOTTLIEB RA: Ischemia/reperfusion injury at the intersection with cell death. J. Mol. Cell. Cardiol. (2005) 38(1):21-33.
  • ZHANG F, YIN W, CHEN J: Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol. Res. (2004) 26(8):835-845.
  • KROEMER G, EL-DEIRY WS, GOLSTEIN P et al.: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. (2005) 12(Suppl. 2):1463-1467.
  • KELLEY SK, ASHKENAZI A: Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. (2004) 4(4):333-339.
  • GANTEN TM, KOSCHNY R, SYKORA J et al.: Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin. Cancer Res. (2006) 12(8):2640-2646.
  • JO M, KIM TH, SEOL DW et al.: Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat. Med. (2000) 6(5):564-567.
  • LIU X, KIM CN, YANG J, JEMMERSON R, WANG X: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell (1996) 86(1):147-157.
  • YANG J, LIU X, BHALLA K et al.: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science (1997) 275(5303):1129-1132.
  • KLUCK RM, BOSSY-WETZEL E, GREEN DR, NEWMEYER DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science (1997) 275(5303):1132-1136.
  • KUWANA T, MACKEY MR, PERKINS G et al.: Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell (2002) 111(3):331-342.
  • HALESTRAP A: Biochemistry: a pore way to die. Nature (2005) 434(7033):578-579.
  • KERR JF, WYLLIE AH, CURRIE AR: Apoptosis: a basis biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer (1972) 26:239-257.
  • BAINES CP, KAISER RA, PURCELL NH et al.: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature (2005) 434(7033):658-662.
  • NAKAGAWA T, SHIMIZU S, WATANABE T et al.: Cyclophilin D -dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature (2005) 434(7033):652-658.
  • DESAGHER S, OSEN-SAND A, NICHOLS A et al.: Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. (1999) 144(5):891-901.
  • KORSMEYER SJ, WEI MC, SAITO M et al.: Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. (2000) 7(12):1166-1173.
  • WEI MC, ZONG WX, CHENG EH et al.: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science (2001) 292(5517):727-730.
  • LINDSTEN T, ROSS AJ, KING A et al.: The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell (2000) 6(6):1389-1399.
  • KNUDSON CM, TUNG KS, TOURTELLOTTE WG, BROWN GA, KORSMEYER SJ: Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science (1995) 270(5233):96-99.
  • ADAMS JM: Ways of dying: multiple pathways to apoptosis. Genes Dev. (2003) 17(20):2481-2495.
  • DANIAL NN, KORSMEYER SJ: Cell death: critical control points. Cell (2004) 116(2):205-219.
  • GILLISSEN B, ESSMANN F, GRAUPNER V et al.: Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO J. (2003) 22(14):3580-3590.
  • PARDO J, URBAN C, GALVEZ EM et al.: The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. J. Cell Biol. (2006) 174(4):509-519.
  • LINDENBOIM L, KRINGEL S, BRAUN T, BORNER C, STEIN R: Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death Differ. (2005) 12(7):713-723.
  • HUANG DC, STRASSER A: BH3-Only proteins-essential initiators of apoptotic cell death. Cell (2000) 103(6):839-842.
  • PUTHALAKATH H, STRASSER A: Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. (2002) 9(5):505-512.
  • LETAI A, BASSIK MC, WALENSKY LD et al.: Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell (2002) 2(3):183-192.
  • CHEN L, WILLIS SN, WEI A et al.: Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell (2005) 17(3):393-403.
  • KUWANA T, BOUCHIER-HAYES L, CHIPUK JE et al.: BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell (2005) 17(4):525-535.
  • CERTO M, MOORE VDEL G, NISHINO M et al.: Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell (2006) 9(5):351-365.
  • CHEUNG EC, SLACK RS: Emerging role for ERK as a key regulator of neuronal apoptosis. Sci. STKE (2004) 2004(251):PE45.
  • GOSWAMI A, RANGANATHAN P, RANGNEKAR VM: The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res. (2006) 66(6):2889-2892.
  • KIM D, CHENG GZ, LINDSLEY CW, YANG H, CHENG JQ: Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr. Opin. Investig. Drugs (2005) 6(12):1250-1258.
  • SHAULIAN E, KARIN M: AP-1 as a regulator of cell life and death. Nat. Cell Biol. (2002) 4(5):E131-E136.
  • KARIN M, LIN A: NF-κB at the crossroads of life and death. Nat. Immunol. (2002) 3(3):221-227.
  • DRUKER BJ, SAWYERS CL, KANTARJIAN H et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. (2001) 344(14):1038-1042.
  • CLARKE AR, PURDIE CA, HARRISON DJ et al.: Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (1993) 362:849-852.
  • LOWE SW, RULEY HE, JACKS T, HOUSMAN DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell (1993) 74(6):957-967.
  • VILLUNGER A, MICHALAK EM, COULTAS L et al.: p53- and drug-induced apoptotic responses mediated by BH3-only Proteins Puma and Noxa. Science (2003) 302(5647):1036-1038.
  • FULDA S, DEBATIN KM: Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene (2006) 25(34):4798-4811.
  • WILLIS SN, ADAMS JM: Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. (2005) 17(6):617-625.
  • LOWE SW, SCHMITT EM, SMITH SW, OSBORNE BA, JACKS T: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature (1993) 362:847-849.
  • JEFFERS JR, PARGANAS E, LEE Y et al.: Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell (2003) 4(4):321-328.
  • FOSTER BA, COFFEY HA, MORIN MJ, RASTINEJAD F: Pharmacological rescue of mutant p53 conformation and function. Science (1999) 286(5449):2507-2510.
  • KHURI FR, NEMUNAITIS J, GANLY I et al.: a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. (2000) 6(8):879-885.
  • CHENE P, FUCHS J, BOHN J et al.: A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. (2000) 299(1):245-253.
  • YOU H, PELLEGRINI M, TSUCHIHARA K et al.: FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. (2006) 203(7):1657-1663.
  • STAHL M, DIJKERS PF, KOPS GJ et al.: The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. (2002) 168(10):5024-5031.
  • SUN Y, LEAMAN DW: Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection. J. Biol. Chem. (2005) 280(16):15561-15568.
  • QIN JZ, ZIFFRA J, STENNETT L et al.: Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. (2005) 65(14):6282-6293.
  • KIM JY, AHN HJ, RYU JH, SUK K, PARK JH: BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J. Exp. Med. (2004) 199(1):113-124.
  • ALVES NL, DERKS IA, BERK E et al.: The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity (2006) 24(6):703-716.
  • O’CONNOR L, STRASSER A, O’REILLY LA et al.: Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. (1998) 17(2):384-395.
  • PUTHALAKATH H, HUANG DC, O’REILLY LA, KING SM, STRASSER A: The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol.Cell (1999) 3(3):287-296.
  • BEDIKIAN AY, MILLWARD M, PEHAMBERGER H et al.: Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol. (2006) 24(29):4738-4745.
  • MOORE J, SEITER K, KOLITZ J et al.: A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk. Res. (2006) 30(7):777-783.
  • KIM R, EMI M, MATSUURA K, TANABE K: Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther. (2007) 14(1):1-11.
  • RAFFO A, LAI JC, STEIN CA et al.: Antisense RNA down-regulation of bcl-2 expression in DU145 prostate cancer cells does not diminish the cytostatic effects of G3139 (Oblimersen). Clin. Cancer Res. (2004) 10(9):3195-3206.
  • SIMOES-WUST AP, HOPKINS-DONALDSON S, SIGRIST B et al.: A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides (2004) 14(3):199-209.
  • WALENSKY LD, KUNG AL, ESCHER I et al.: Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science (2004) 305(5689):1466-1470.
  • VAN DELFT MF, WEI AH, MASON KD et al.: The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell (2006) 10(5):389-399.
  • OLTERSDORF T, ELMORE SW, SHOEMAKER AR et al.: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature (2005) 435(7042):677-681.
  • KONOPLEVA M, CONTRACTOR R, TSAO T et al.: Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell (2006) 10(5):375-388.
  • SHOEMAKER AR, OLEKSIJEW A, BAUCH J et al.: A small-molecule inhibitor of Bcl-xL potentiates the activity of cytotoxic drugs In vitro and In vivo. Cancer Res. (2006) 66(17):8731-8739.
  • OPFERMAN JT, LETAI A, BEARD C et al.: Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature (2003) 426(6967):671-676.
  • OPFERMAN JT, IWASAKI H, ONG CC et al.: Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science (2005) 307(5712):1101-1104.
  • RINKENBERGER JL, HORNING S, KLOCKE B, ROTH K, KORSMEYER SJ: Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. (2000) 14(1):23-27.
  • VEIS DJ, SORENSON CM, SHUTTER JR, KORSMEYER SJ: Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell (1993) 75(2):229-240.
  • VERHAGEN AM, EKERT PG, PAKUSCH M et al.: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell (2000) 102(1):43-53.
  • DU C, FANG M, LI Y, LI L, WANG X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell (2000) 102(1):33-42.
  • ECKELMAN BP, SALVESEN GS: The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J. Biol. Chem. (2006) 281(6):3254-3260.
  • SCOTT FL, DENAULT JB, RIEDL SJ et al.: XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. (2005) 24(3):645-655.
  • OKADA H, SUH WK, JIN J et al.: Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell Biol. (2002) 22(10):3509-3517.
  • WRIGHT CW, DUCKETT CS: Reawakening the cellular death program in neoplasia through the therapeutic blockade of IAP function. J. Clin. Invest. (2005) 115(10):2673-2678.
  • VAUX DL, SILKE J: IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell Biol. (2005) 6(4):287-297.
  • HALESTRAP AP, CLARKE SJ, JAVADOV SA: Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc. Res. (2004) 61(3):372-385.
  • TSUJIMOTO Y, NAKAGAWA T, SHIMIZU S: Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta (2006) 1757(9-10):1297-1300.
  • WALDMEIER PC, FELDTRAUER JJ, QIAN T, LEMASTERS JJ: Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol. Pharmacol. (2002) 62(1):22-29.
  • CADENAS E: Mitochondrial free radical production and cell signaling. Mol. Aspects Med. (2004) 25(1-2):17-26.
  • MARCZIN N, EL-HABASHI N, HOARE GS, BUNDY RE, YACOUB M: Antioxidants in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms. Arch. Biochem. Biophys. (2003) 420(2):222-236.
  • NGUYEN JT, WELLS JA: Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc. Natl. Acad. Sci. USA (2003) 100(13):7533-7538.
  • BAO Q, SHI Y: Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. (2007) 14(1):56-65.
  • WANG X: The expanding role of mitochondria in apoptosis. Genes Dev. (2001) 15(22):2922-2933.
  • EKERT PG, VAUX DL: The mitochondrial death squad: hardened killers or innocent bystanders? Curr. Opin. Cell Biol. (2005) 17(6):626-630.
  • LAVRIK IN, GOLKS A, KRAMMER PH: Caspases: pharmacological manipulation of cell death. J. Clin. Invest. (2005) 115(10):2665-2672.
  • EKERT PG, READ SH, SILKE J et al.: Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. (2004) 165(6):835-842.
  • MARSDEN VS, O’CONNOR L, O’REILLY LA et al.: Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c /paf-1/caspase-9 apoptosome. Nature (2002) 419(6907):634-637.
  • MARTINOU I, DESAGHER S, ESKES R et al.: The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. (1999) 144(5):883-889.
  • SATHASIVAM S, SHAW PJ: Apoptosis in amyotrophic lateral sclerosis-what is the evidence? Lancet Neurol. (2005) 4(8):500-509.
  • METHOT N, HUANG J, COULOMBE N et al.: Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J. Exp. Med. (2004) 199(2):199-207.
  • PERFETTINI JL, KROEMER G: Caspase activation is not death. Nat. Immunol. (2003) 4(4):308-310.
  • VANDENABEELE P, VANDEN BERGHE T, FESTJENS N: Caspase inhibitors promote alternative cell death pathways. Sci. STKE (2006) 2006(358):pe44.
  • HOTCHKISS RS, CHANG KC, SWANSON PE et al.: Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat. Immunol. (2000) 1(6):496-501.
  • LINTON SD, AJA T, ARMSTRONG RA et al.: First-in-class pan caspase inhibitor developed for the treatment of liver disease. J. Med. Chem. (2005) 48(22):6779-6782.
  • VALENTINO KL, GUTIERREZ M, SANCHEZ R, WINSHIP MJ, SHAPIRO DA: First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int. J. Clin. Pharmacol. Ther. (2003) 41(10):441-449.
  • EARNSHAW WC, MARTINS LM, KAUFMANN SH: Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann. Rev. Biochem. (1999) 68:383-424.
  • VAUX DL, CORY S, ADAMS JM: Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature (1988) 335(6189):440-442.
  • HANAHAN D, WEINBERG RA: The hallmarks of cancer. Cell (2000) 100(1):57-70.
  • FEARNHEAD HO, MCCURRACH ME, O’NEILL J et al.: Oncogene-dependent apoptosis in extracts from drug-resistant cells. Genes Dev. (1997) 11(10):1266-1276.
  • TSUJIMOTO Y, COSSMAN J, JAFFE E, CROCE CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science (1985) 228:1440-1443.
  • NGAN BY, CHEN-LEVY Z, WEISS LM, WARNKE RA, CLEARY ML: Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N. Engl. J. Med. (1988) 318(25):1638-1644.
  • STURM I, STEPHAN C, GILLISSEN B et al.: Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ. (2006) 13(4):619-627.
  • FECKER LF, GEILEN CC, TCHERNEV G et al.: Loss of proapoptotic bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis. J. Invest. Dermatol. (2006) 126(6):1366-1371.
  • STRASSER A: Dr Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy. Int. J. Cancer (1999) 81(4):505-511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.