865
Views
127
CrossRef citations to date
0
Altmetric
Review

Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery

, , &
Pages 695-705 | Published online: 27 Apr 2007

Bibliography

  • MAGNI G, AMICI A, EMANUELLI M et al.: Enzymology of NAD+ homeostasis in man. Cell. Mol. Life Sci. (2004) 61:19-34.
  • MAGNI G, AMICI A, EMANUELLI M, RAFFAELLI N, RUGGIERI S: Enzymology of NAD+ synthesis. Adv. Enzyme Regul. Relat. Areas Mol. Biol. (1999) 73:135-182.
  • YING W: NAD+ and NADH in cellular functions and cell death. Front. Biosci. (2006) 11:3129-3148.
  • OKAMOTO H: Recent advances in physiological and pathological significance of tryptophan-NAD+ metabolites: lessons from insulin-producing pancreatic beta-cells. Adv. Exp. Med. Biol. (2003) 527:243-252.
  • BERGER F, RAMIREZ-HERNANDEZ MH, ZIEGLER M: The new life of a centenarian: signaling functions of NAD(P). Trends Biochem. Sci. (2004) 29:111-118.
  • LI F, CHONG ZZ, MAIESE K: Cell life versus cell longevity: the mysteries surrounding the NAD+ precursor nicotinamide. Curr. Med. Chem. (2006) 13:883-895.
  • REVOLLO JR, GRIMM AA, IMAI S: The regulation of nicotinamide dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol. (2007) 23:164-170.
  • SCHREIBER V, DANTZER F, AME JC, DE MURCIA G: Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. (2006) 7:517-528.
  • BURKLE A: Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. (2005) 272:4576-4589.
  • GAGNE JP, HENDZEL MJ, DROIT A, POIRIER GG: The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr. Opin. Cell Biol. (2006) 18:145-151.
  • KIM MY, ZHANG T, KRAUS WL: Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. (2005) 19:1951-1967.
  • OEI SL, KEIL C, ZIEGLER M: Poly(ADP-ribosylation) and genomic stability. Biochem. Cell Biol. (2005) 83:263-269.
  • HASMANN M, SCHEMAINDA I: FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. (2003) 63:7436-7442.
  • DENU JM: The Sir2 family of protein deacetylases. Curr. Opin. Chem. Biol. (2005) 9:431-440.
  • DIEFENBACH J, BURKLE A: Introduction to poly(ADP-ribose) metabolism. Cell. Mol. Life Sci. (2005) 62:721-730.
  • YANG H, LAVU S, SINCLAIR DA: Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Exp. Gerontology (2006) 41:718-726.
  • SAUVE AA, WOLBERGER C, SCHRAMM VL, BOEKE JD: The biochemistry of sirtuins. Ann. Rev. Biochem. (2006) 75:435-465.
  • GUARENTE L, PICARD F: Calorie restriction-the SIR2 connection. Cell (2005) 120:473-482.
  • BLANDER G, GUARENTE L: The Sir2 family of protein deacetylases. Ann. Rev. Biochem. (2004) 73:417-435.
  • GUSE AH: Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR). FEBS J. (2005) 272:4590-4597.
  • DE FLORA A, ZOCCHI E, GUIDA L, FRANCO L, BRUZZONE S: Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann. N.Y. Acad. Sci. (2004) 1028:176-191.
  • LEE HC: Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP. Curr. Mol. Med. (2004) 4:227-237.
  • RONGVAUX A, ANDRIS F, VAN GOOL F, LEO O: Reconstructing eukaryotic NAD metabolism. Bioessays (2003) 25:683-690.
  • TAKIKAWA O: Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem. Biophys. Res. Commun. (2005) 338:12-19.
  • FOROUHAR F, ANDERSON JLR, MOWAT CG et al.: Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA (2007) 104:473-478.
  • ZHANG Y, KANG SA, MUKHERJEE T et al.: Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Biochem. (2007) 46:145-155.
  • SUGIMOTO H, ODA S-I, OTSUKI T et al.: Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechnaism of O2 incorporation by a heme-containing dioxygenase. Proc. Natl. Acad. Sci. USA (2006) 103:2611-2616.
  • MOMANY C, LEVDIKOV V, BLAGOVA L, LIMA S, PHILLIPS RS: Three-dimensional structure of kynureninase from Pseudomonas fluorescens. Biochem. (2004) 43:1193-1203.
  • ZHANG Y, COLABROY KL, BEGLEY TP, EALICK SE: Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. Biochem. (2005) 44:7632-7643.
  • STONE TW: Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog. Neurobiol. (2001) 64:185-218.
  • MAGNI G, AMICI A, EMANUELLI M et al.: Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr. Med. Chem. (2004) 11:873-885.
  • CAO H, PIETRAK BL, GRUBMEYER C: Quinolinate phosphoribosyltransferase: kinetic mechanism for a type II PRTase. Biochem. (2002) 41:3520-3528.
  • SHARMA V, GRUBMEYER C, SACCHETTINI JC: Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure (1998) 6:1587-1599.
  • EADS JC, OZTURK D, WEXLER TB, GRUBMEYER C, SACCHETTINI JC: A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure (1997) 5:47-58.
  • ZHOU T, KURNASOV O, TOMCHICK DR et al.: Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J. Biol. Chem. (2002) 277:13148-13154.
  • GARAVAGLIA S, D'ANGELO I, EMANUELLI M et al.: Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J. Biol. Chem. (2002) 277:8524-8530.
  • ZHANG H, ZHOU T, KURNASOV O et al.: Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD. Structure (2002) 10:69-79.
  • WOJCIK M, SEIDLE HF, BIEGANOWSKI P, BRENNER C: Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste. J. Biol. Chem. (2006) 281:33395-33402.
  • JAUCH R, HUMM A, HUBER R, WAHL MC: Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J. Biol. Chem. (2005) 280:15131-15140.
  • KANG GB, KIM YS, IM YJ et al.: Crystal structure of NH3-dependent NAD+ synthetase from Helicobacter pylori. Proteins (2005) 58:985-988.
  • RIZZI M, NESSI C, MATTEVI A et al.: Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis. EMBO J. (1996) 15:5125-5134.
  • PREISS J, HANDLER P: Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. (1958) 233:488-492.
  • GROSS JW, RAJAVEL M, GRUBMEYER C: Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochem. (1998) 37:4189-4199.
  • SHIN DH, OGANESYAN N, JANCARIK J et al.: Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum. J. Biol. Chem. (2005) 280:18326-18335.
  • CHAPPIE JS, CANAVES JM, HAN GW et al.: The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure (2005) 13:1385-1396.
  • KHAN JA, TAO X, TONG L: Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat. Struct. Mol. Biol. (2006) 13:582-588.
  • RONGVAUX A, SHEA RJ, MULKS MH et al.: Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phorphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. (2002) 32:3225-3234.
  • REVOLLO JR, GRIMM AA, IMAI S-I: The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. (2004) 279:50754-50763.
  • KIM MK, LEE JH, KIM H et al.: Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J. Mol. Biol. (2006) 362:66-77.
  • WANG T, ZHANG X, BHEDA P et al.: Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. (2006) 13:661-662.
  • KITANI T, OKUNO S, FUJISAWA H: Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. (2003) 544:74-78.
  • FUKUHARA A, MATSUDA M, NISHIZAWA M et al.: Visfatin, a protein secreted by visceral fat that mimics the effects of insulin. Science (2005) 307:426-430.
  • SAMAL B, SUN Y, STEARNS G et al.: Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. (1994) 14:1431-1437.
  • GHISLAIN M, TALLA E, FRANCOIS JM: Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidease gene. Yeast (2002) 19:215-224.
  • DU X, WANG W, KIM R et al.: Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochem. (2001) 40:14166-14172.
  • BIEGANOWSKI P, BRENNER C: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell (2004) 117:495-502.
  • KURNASOV OV, POLANUYER BM, ANANTA S et al.: Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J. Bacteriol. (2002) 184:6906-6917.
  • SINGH SK, KURNASOV OV, CHEN B et al.: Crystal structure of Haemophilus influenza NadR protein. A bifunctional enzyme endowed with NMN adenylyltransferase and ribosylnicotinamide kinase activities. J. Biol. Chem. (2002) 277:33291-33299.
  • MERDANOVIC M, SAUER E, REIDL J: Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenza. J. Bacteriol. (2005) 187:4410-4420.
  • JAGER W, SALAMON A, SZEKERES T: Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside. Curr. Med. Chem. (2002) 9:781-786.
  • PANKIWICZ KW, PATTERSON SE, BLACK PL et al.: Cofactor mimics as selective inhibitors of NAD-dependent inosine monophosphate dehydrogenase (IMPDH)-the major therapeutic target. Curr. Med. Chem. (2004) 11:887-900.
  • GRIFANTINI M: Tiazofurine ICN Pharmaceuticals. Curr. Opin. Investig. Drugs (2000) 1:257-262.
  • WEBER G, SHEN F, ORBAN TI, KOKENY S, OLAH E: Targeting signal transduction. Adv. Enzyme Regul. (2003) 43:47-56.
  • MAROUN JA, STEWART DJ: Phase I study of tiazofurin (2-β-D-ribofuranosylthiazole-4-carboxamide, NSC 286193). Invest. New Drugs (1990) 8:S33-S39.
  • POPSAVIN M, SPAIC S, SVIRCEV M et al.: 2-(3-amino-3-deoxy-β-D-xylofuranosyl) thiazole-4-carboxamide: a new tiazofurin analogue with potent antitumour activity. Bioorg. Med. Chem. Lett. (2006) 16:5317-5320.
  • RATCLIFFE AJ: Inosine 5′-monophosphate dehydrogenase inhibitors for the treatment of autoimmune diseases. Curr. Opin. Drug Discov. Dev. (2006) 9:595-605.
  • DYMOCK BW: Emerging therapies for hepatitis C virus infection. Expert Opin. Emerg. Drugs (2001) 6:13-42.
  • GREM JL, RUBINSTEIN L, KING SA et al.: Clinical toxicity associated with tiazofurin. Invest. New Drugs (1990) 8:227-238.
  • KARRAS GI, KUSTATSCHER G, BUHECHA HR et al.: The macro domain is an ADP-ribose binding module. EMBO J. (2005) 24:1911-1920.
  • EGLOFF MP, MALET H, PUTICS A et al.: Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. (2006) 80:8493-8502.
  • JACOBSON EL, SHIEH WM, HUANG AC: Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis. Mol. Cell. Biochem. (1999) 193:69-74.
  • HUFTON SE, MOERKERK PT, BRANDWIJK R et al.: A profile of differentially expressed genes in primary colorectal cancer using suppression substractive hybridization. FEBS Lett. (1999) 463:77-82.
  • VAN BEIJNUM JR, MOERKERK PT, GERBERS AJ et al.: Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int. J. Cancer (2002) 101:118-127.
  • WOSIKOWSKI K, MATTERN K, SCHEMAINDA I et al.: WK175, a novel antitumor agent, decreases the intracellular nicotinamide adenine dinucleotide concentration and induces the apoptotic cascade in human leukemia cells. Cancer Res. (2002) 62:1057-1062.
  • MURUGANANDHAM M, ALFIERI AA, MATEI C et al.: Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin. Cancer Res. (2005) 11:3503-3513.
  • DREVS J, LOSER R, RATTEL B, ESSER N: Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res. (2003) 23:4853-4858.
  • POGREBNIAK A, SCHEMAINDA I, AZZAM K et al.: Chemopotentiating effects of a novel NAD biosynthesis inhibitor, FK866, in combination with antineoplastic agents. Eur. J. Med. Res. (2006) 11:313-321.
  • GROSS J, RAJAVEL M, SEGURA E, GRUBMEYER C: Energy coupling in Salmonella typhimurium nicotinic acid phosphoribosyltransferase: identification of His-219 as site of phosphorylation. Biochem. (1996) 35:3917-3924.
  • EMANUELLI M, CARNEVALI F, SACCUCCI F et al.: Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J. Biol. Chem. (2001) 276:406-412.
  • UYTTENHOVE C, PILOTTE L, THEATE I et al.: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. (2003) 9:1269-1274.
  • MELLOR A: Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem. Biophys. Res. Commun. (2005) 338:20-24.
  • MUNN DH: Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr. Opin. Immunol. (2006) 18:220-225.
  • MULLER AJ, DUHADAWAY JB, DONOVER PS, SUTANTO-WARD E, PRENDERGAST GC: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppresion gene Bin1, potentiates cancer chemotherapy. Nat. Med. (2005) 11:312-319.
  • LIN SJ, FORD E, HAIGIS M, LISZT G, GUARENTE L: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. (2004) 18:12-16.
  • ANDERSON RM, BITTERMAN KJ, WOOD JG, MEDVEDIK O, SINCLAIR DA: Nocotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomycces cerevisiae. Nature (2003) 423:181-185.
  • ANDERSON RM, LATORRE-ESTEVES M, NEVES AR et al.: Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science (2003) 302:2124-2126.
  • LIN SJ, DEFOSSEZ PA, GUARENTE L: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science (2000) 289:2126-2128.
  • LIOU GG, TANNY JC, KRUGER RG, WALZ T, MOAZED D: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell (2005) 121:515-527.
  • KUSTATSCHER G, HOTHORN M, PUGIEUX C, SCHEFFZEK K, LADURNER AG: Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. (2005) 12:624-625.
  • HOFF KG, WOLBERGER C: Getting a grip on O-acetyl-ADP-ribose. Nat. Struct. Mol. Biol. (2005) 12:560-561.
  • ARAKI T, SASAKI Y, MILBRANDT J: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science (2004) 305:1010-1013.
  • SASAKI Y, ARAKI T, MILBRANDT J: Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. (2006) 26:8484-8491.
  • WANG J, ZHAI Q, CHEN Y et al.: A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol. (2005) 170:349-355.
  • KANEKO S, WANG J, KANEKO M et al.: Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. (2006) 26:9794-9804.
  • COLEMAN MP, ADALBERT R, BEIROWSKI B: Neuroprotective strategies in MS: lessons from C57BL/Wld(S) mice. J. Neurol. Sci. (2005) 233:133-138.
  • YING W, WEI G, WANG D et al.: Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front. Biosci. (2007) 12:2728-2734.
  • YING W: NAD+ and NADH in brain functions, brain disease and brain aging. Front. Biosci. (2007) 12:1863-1888.
  • MACK TG, REINER M, BEIROWSKI B et al.: Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. (2001) 4:1199-1206.
  • CONFORTI L, TARLTON A, MACK TG et al.: A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl. Acad. Sci. USA (2000) 97:11377-11382.
  • CONFORTI L, FANG G, BEIROWSKI B et al.: NAD+ and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ. (2007) 14:116-127.
  • WATANABE M, TSUKIYAMA T, HATAKEYAMA S: Protection of vincristine-induced neuropathy by Wld(S) expression and the independence of the activity of Nmnat1. Neurosci. Lett. (2007) 411:228-232.
  • ZHAI RG, CAO Y, HIESINGER PR et al.: Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PloS Biol. (2006) 4:e416.
  • SCHWARCZ R, WHETSELL WO Jr, MANGANO RM: Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science (1983) 219:316-318.
  • MILLER CL, LLENOS IC, DULAY JR et al.: Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis. (2004) 15:618-629.
  • MILLER CL, LLENOS IC, DULAY JR, WEIS S: Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. (2006) 1073-1074:25-37.
  • ROSSI F, HAN Q, LI J, LI J, RIZZI M: Crystal structure of human kynurenine aminotransferase I. J. Biol. Chem. (2004) 279:50214-50220.
  • HAN Q, GAO YG, ROBINSON H et al.: Crystal structure of the Aedes aegypti kynurenine aminotransferase. FEBS J. (2005) 272:2198-2206.
  • STONE TW, DARLINGTON LG: Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. (2002) 1:609-620.
  • SCHWARCZ R: The kynurenine pathway of tryptophan degradation as a drug target. Curr. Opin. Pharmacol. (2004) 4:12-17.
  • MELLOR AL, MUNN DH: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. (2004) 4:762-774.
  • MUNN DH, ZHOU M, ATTWOOD JT et al.: Prevention of allogeneic fetal rejection by tryptophan catabolism. Science (1998) 281:1191-1193.
  • PLATTEN M, HO PP, YOUSSEF S et al.: Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (2005) 310:850-855.
  • JIA SH, LI Y, PARODO J et al.: Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J. Clin. Investig. (2004) 113:1318-1327.
  • YE SQ, SIMON BA, MALONEY JP et al.: Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am. J. Respir. Crit. Care Med. (2005) 171:361-370.
  • LIU Q, KRIKSUNOV IA, GRAEFF R et al.: Crystal structure of human CD38 extracellular domain. Structure (2005) 13:1331-1339.
  • LIU Q, KRIKSUNOV IA, GRAEFF R, LEE HC, HAO Q: Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38. J. Biol. Chem. (2007) 282:5853-5861.
  • STEPHENS JM, VIDAL-PUIG AJ: An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr. Opin. Lipidol. (2006) 17:128-131.
  • ARNER P: Visfatin-a true or false trail to type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. (2006) 91:28-30.
  • SZABO C: Nicotinamide: a jack of all trades (but master of none?). Intensive Care Med. (2003) 29:863-866.
  • TONG L, PAV S, WHITE DM et al.: A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. (1997) 4:311-316.
  • PARGELLIS C, TONG L, CHURCHILL L et al.: Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. (2002) 9:268-272.
  • SCHINDLER T, BORNMANN W, PELLICENA P et al.: Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science (2000) 289:1938-1942.
  • SCHWARCZ R, PELLICCIARI R: Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther. (2002) 303:1-10.
  • GASPARI P, BANERJEE T, MALACHOWSKI WP et al.: Structure-activity study of Brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem. (2006) 49:684-692.
  • BRASTIANOS HC, VOTTERO E, PATRICK BO et al.: Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J. Amer. Chem. Soc. (2006) 128:16046-16047.
  • PELLICCIARI R, AMORI L, COSTANTINO G et al.: Modulation of the kynurenine pathway of tryptophan metabolism in search for neuroprotective agents. Focus on kynurenine-3-hydroxylase. Adv. Exp. Med. Biol. (2003) 527:621-628.
  • GIORGINI F, GUIDETTI P, NGUYEN Q, BENNETT SC, MUCHOWSKI PJ: A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet. (2005) 37:526-531.
  • CARSON M: Ribbon models of macromolecules. J. Mol. Graphics (1987) 5:103-106.
  • NICHOLLS A, SHARP KA, HONIG B: Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins (1991) 11:281-296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.