226
Views
67
CrossRef citations to date
0
Altmetric
Review

The potential for phospholipase D as a new therapeutic target

&
Pages 707-716 | Published online: 27 Apr 2007

Bibliography

  • YANG SF, FREER S, BENSON AA: Transphosphatidylation by phospholipase D. J. Biol. Chem. (1967) 242(3):477-484.
  • FROHMAN MA, SUNG TC, MORRIS AJ: Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta (1999) 1439(2):175-186.
  • LISCOVITCH M, CZARNY M, FIUCCI G, TANG X: Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. (2000) 345(Pt. 3):401-415.
  • HAMMOND SM, ALTSHULLER YM, SUNG TC et al.: Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. (1995) 270(50):29640-29643.
  • MCDERMOTT M, WAKELAM MJ, MORRIS AJ: Phospholipase D. Biochem. Cell Biol. (2004) 82(1):225-253.
  • JENKINS GM, FROHMAN MA: Phospholipase D: a lipid centric review. Cell. Mol. Life Sci. (2005) 62(19-20):2305-2316.
  • CAZZOLLI R, SHEMON AN, FANG MQ, HUGHES WE: Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life (2006) 58(8):457-461.
  • EXTON JH: Regulation of phospholipase D. FEBS Lett. (2002) 531(1):58-61.
  • COCKCROFT S, DE MATTEIS MA: Inositol lipids as spatial regulators of membrane traffic. J. Membr. Biol. (2001) 180:187-194.
  • BRINDLEY DN, WAGGONER DW: Mammalian lipid phosphate phosphohydrolases. J. Biol. Chem. (1998) 273(38):24281-24284.
  • TANG J, KRIZ RW, WOLFMAN N et al.: A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J. Biol. Chem. (1997) 272(13):8567-8575.
  • EXTON JH: Phospholipase D-structure, regulation and function. Rev. Physiol. Biochem. Pharmacol. (2002) 144:1-94.
  • KOONIN EV: A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. Trends Biochem. Sci. (1996) 21:242-243.
  • PONTING CP, KERR ID: A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases. Prot. Sci. (1996) 5:914-922.
  • SUNG TC, ROPER RL, ZHANG Y et al.: Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J. (1997) 16(15):4519-4530.
  • STUCKEY JA, DIXON JE: Crystal structure of a phospholipase D family member. Nat. Struct. Biol. (1999) 6:278-284.
  • SUNG T-C, ZHANG Y, MORRIS AJ, FROHMAN MA: Structural analysis of human Phospholipase D1. J. Biol. Chem. (1999) 274:3659-3666.
  • YAMAZAKI M, ZHANG Y, WATANABE H et al.: Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. J. Biol. Chem. (1999) 274(10):6035-6038.
  • DU G, ALTSHULLER YM, KIM Y et al.: Dual requirement for rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. Mol. Biol. Cell (2000) 11(12):4359-4368.
  • BROWN HA, GUTOWSKI S, MOOMAW CR, SLAUGHTER C, STERNWEIS PC: ADP-Ribosylation Factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell (1993) 75:1137-1144.
  • COCKCROFT S, THOMAS GMH, FENSOME A et al.: Phospholipase D: a downstream effector of ARF in granulocytes. Science (1994) 263:523-526.
  • HAMMOND SM, JENCO JM, NAKASHIMA S et al.: Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase Cα. J. Biol. Chem. (1997) 272(6):3860-3868.
  • SINGER WD, BROWN HA, JIANG X, STERNWEIS PC: Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J. Biol. Chem. (1996) 271:4504-4510.
  • ZHANG Y, ALTSHULLER YM, HAMMOND SM et al.: Loss of receptor regulation by a phospholipase D1 mutant unresponsive to protein kinase C. EMBO J. (1999) 18(22):6339-6348.
  • CHOI SY, HUANG P, JENKINS GM et al.: A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. (2006) 8(11):1255-1262.
  • INTERTHAL H, POULIOT JJ, CHAMPOUX JJ: The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc. Natl. Acad. Sci. USA (2001) 98:12009-12014.
  • MUNCK A, BOHM C, SEIBEL NM, HASHEMOL HOSSEINI Z, HAMPE W: Hu-K4 is a ubiquitously expressed Type 2 transmembrane protein associated with the endoplasmic reticulum. FEBS J. (2005) 272(7):1718-1726.
  • MEIER KE, GIBBS TC, KNOEPP SM, ELLA KM: Expression of phospholipase D isoforms in mammalian cells. Biochim. Biophys. Acta (1999) 1439:199-213.
  • SAQIB KM, WAKELAM MJ: Differential expression of human phospholipase D genes. Biochem. Soc. Trans. (1997) 25(4):S586.
  • LOPEZ I, ARNOLD RS, LAMBETH JD: Cloning and Initial Characterization of a Human Phospholipase D2 (hPLD2). J. Biol. Chem. (1998) 273:12846-12852.
  • STEED PM, CLARK KL, BOYAR WC, LASALA DJ: Characterization of human PLD2 and the analysis of PLD isoform splice variants. FASEB J. (1998) 12(13):1309-1317.
  • LISCOVITCH M, CZARNY M, FIUCCI G, LAVIE Y, TANG X: Localization and possible functions of phospholipase D isozymes. Biochim. Biophys. Acta (1999) 1439(2):245-263.
  • COLLEY WC, SUNG TC, ROLL R et al.: Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. (1997) 7(3):191-201.
  • TODA K, NOGAMI M, MURAKAMI K, KANAHO Y, NAKAYAMA K: Colocalization of phospholipase D1 and GTP-binding-defective mutant of ADP-ribosylation factor 6 to endosomes and lysosomes. Febs Lett. (1999) 442(2-3):221-225.
  • FREYBERG Z, SWEENEY D, SIDDHANTA A et al.: Intracellular localization of phospholipase D1 in mammalian cells. Mol. Biol. Cell (2001) 12(4):943-955.
  • VITALE N, CAUMONT AS, CHASSEROT-GOLAZ S et al.: Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. (2001) 20(10):2424-2434.
  • BROWN FD, THOMPSON N, SAQIB KM et al.: Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr. Biol. (1998) 8:835-838.
  • DU G, ALTSHULLER YM, VITALE N et al.: Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. (2003) 162(2):305-315.
  • HUGHES WE, ELGUNDI Z, HUANG P, FROHMAN MA, BIDEN TJ: Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic β-cells. J. Biol. Chem. (2004) 279(26):27534-27541.
  • HUANG P, ALTSHULLER YM, CHUNQIU HOU J, PESSIN JE, FROHMAN MA: Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol. Biol. Cell (2005) 16:2614-2623.
  • HONDA A, NOGAMI M, YOKOZEKI T et al.: Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell (1999) 99(5):521-532.
  • DU G, HUANG P, LIANG BT, FROHMAN MA: Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol. Biol. Cell (2004) 15(3):1024-1030.
  • KTISTAKIS NT, BROWN HA, WATERS MG, STERNWEIS PC, ROTH MG: Evidence that phospholipase D mediates ADP ribosylation factor- dependent formation of Golgi coated vesicles. J. Cell Biol. (1996) 134(2):295-306.
  • BI K, ROTH MG, KTISTAKIS NT: Phosphatidic acid formation by Phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol. (1997) 7:301-307.
  • CHEN YG, SIDDHANTA A, AUSTIN CD et al.: Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J. Cell Biol. (1997) 138(3):495-504.
  • SIDDHANTA A, BACKER JM, SHIELDS D: Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J. Biol. Chem. (2000) 275(16):12023-12031.
  • WASELLE L, GERONA RR, VITALE N et al.: Role of phosphoinositide signaling in the control of insulin exocytosis. Mol. Endocrinol. (2005) 19(12):3097-3106.
  • HUMEAU Y, VITALE N, CHASSEROT-GOLAZ S et al.: A role for phospholipase D1 in neurotransmitter release. Proc. Natl. Acad. Sci. USA (2001) 98(26):15300-15305.
  • PENG Z, BEAVEN MA: An essential role for phospholipase D in the activation of protein kinase C and degranulation in mast cells. J. Immunol. (2005) 174(9):5201-5208.
  • CHOI WS, KIM YM, COMBS C, FROHMAN MA, BEAVEN MA: Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J. Immunol. (2002) 168(11):5682-5689.
  • FENSOME A, CUNNINGHAM E, PROSSER S et al.: ARF and PITP restore GTPγS-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr. Biol. (1996) 6:730-738.
  • WAY G, O’LUANAIGH N, COCKCROFT S: Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis. Biochem. J. (2000) 346(Pt. 1):63-70.
  • BLACKWOOD RA, SMOLEN JE, TRANSUE A et al.: Phospholipase D activity facilitates Ca2+-induced aggregation and fusion of complex liposomes. Am. J. Physiol. (1997) 272(4 Pt. 1):C1279-C1285.
  • KOOIJMAN EE, CHUPIN V, DE KRUIJFF B, BURGER KN: Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic (2003) 4(3):162-174.
  • FRATTI RA, JUN Y, MERZ AJ, MARGOLIS N, WICKNER W: Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. (2004) 167(6):1087-1098.
  • VILLAR AV, GONI FM, ALONSO A: Diacylglycerol effects on phosphatidylinositol-specific phospholipase C activity and vesicle fusion. FEBS Lett. (2001) 494(1-2):117-120.
  • HARSH DM, BLACKWOOD RA: Phospholipase A(2)-mediated fusion of neutrophil-derived membranes is augmented by phosphatidic acid. Biochem. Biophys. Res. Commun. (2001) 282:480-486.
  • VICOGNE J, VOLLENWEIDER D, SMITH JR et al.: Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl. Acad. Sci. USA (2006) 103(40):14761-14766.
  • MOZDY AD, SHAW JM: A fuzzy mitochondrial fusion apparatus comes into focus. Nat. Rev. Mol. Cell. Biol. (2003) 4(6):468-478.
  • CHAN DC: Mitochondria: dynamic organelles in disease, aging, and development. Cell (2006) 125(7):1241-1252.
  • KIJIMA K, NUMAKURA C, IZUMINO H et al.: Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy Type 2A. Hum. Genet. (2005) 116(1-2):23-27.
  • DELETTRE C, LENAERS G, GRIFFOIN JM et al.: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. (2000) 26(2):207-210.
  • KOCH T, BRANDENBURG LO, SCHULZ S et al.: ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J. Biol. Chem. (2003) 278(11):9979-9985.
  • IYER SS, BARTON JA, BOURGOIN S, KUSNER DJ: Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J. Immunol. (2004) 173(4):2615-2623.
  • CORROTTE M, CHASSEROT-GOLAZ S, HUANG P et al.: Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic (2006) 7(3):365-377.
  • KOCH T, WU DF, YANG LQ, BRANDENBURG LO, HOLLT V: Role of phospholipase D2 in the agonist-induced and constitutive endocytosis of G-protein coupled receptors. J. Neurochem. (2006) 97(2):365-372.
  • SHEN Y, XU L, FOSTER D: Role for phospholipase D in receptor-mediated endocytosis. Mol. Cell. Biol. (2001) 21:595-602.
  • LEE CS, KIM IS, PARK JB et al.: The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat. Cell Biol. (2006) 8(5):477-484.
  • PADRON D, TALL RD, ROTH MG: Phospholipase D2 is required for efficient endocytic recycling of transferrin receptors. Mol. Biol. Cell (2006) 17(2):598-606.
  • BHATTACHARYA M, BABWAH AV, GODIN C et al.: Ral and phospholipase D2-dependent pathway for constitutive metabotropic glutamate receptor endocytosis. J. Neurosci. (2004) 24(40):8752-8761.
  • KASAI T, OHGUCHI K, NAKASHIMA S et al.: Increased activity of oleate-dependent type phospholipase D during actinomycin D-induced apoptosis in Jurkat T cells. J. Immunol. (1998) 161(12):6469-6474.
  • KANG JH, SHIN I, HAN JS: Changes of phospholipase D activity in TNF-α and anti-Fas/Apo1 monoclonal antibody induced apoptosis in HL-60 and A20 cells. Exp Mol. Med. (1998) 30(1):21-27.
  • IWASAKI-BESSHO Y, BANNO Y, YOSHIMURA S et al.: Decreased phospholipase D (PLD) activity in ceramide-induced apoptosis of human keratinocyte cell line HaCaT. J. Invest. Dermatol. (1998) 110(4):376-382.
  • CHEN JS, CHAI MQ, CHEN HH, ZHAO S, SONG JG: Regulation of phospholipase D activity and ceramide production in daunorubicin-induced apoptosis in A-431 cells. Biochim. Biophys. Acta (2000) 1488(3):219-232.
  • KIM KO, LEE KH, KIM YH, PARK SK, HAN JS: Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death. Exp Mol. Med. (2003) 35(1):38-45.
  • ZHONG M, SHEN Y, ZHENG Y et al.: Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun. (2003) 302(3):615-619.
  • YAMADA M, BANNO Y, TAKUWA Y et al.: Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells. Biochem. J. (2004) 378(Pt. 2):649-656.
  • YUN DH, JEON ES, SUNG SM, RYU SH, KIM JH: Lysophosphatidylcholine suppresses apoptosis and induces neurite outgrowth in PC12 cells through activation of phospholipase D2. Exp. Mol. Med. (2006) 38(4):375-384.
  • KIM J, LEE YH, KWON TK et al.: Phospholipase D prevents etoposide-induced apoptosis by inhibiting the expression of early growth response-1 and phosphatase and tensin homologue deleted on chromosome 10. Cancer Res. (2006) 66(2):784-793.
  • KISS Z, PETROVICS G, OLAH Z, LEHEL C, ANDERSON WB: Overexpression of protein kinase C-ε and its regulatory domains in fibroblasts inhibits phorbol ester-induced phospholipase D activity. Arch. Biochem. Biophys. (1999) 363(1):121-128.
  • CUVILLIER O, PIRIANOV G, KLEUSER B et al.: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature (1996) 381(6585):800-803.
  • BANNO Y, TAKUWA Y, AKAO Y et al.: Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J. Biol. Chem. (2001) 276(38):35622-35628.
  • SEKULIC A, HUDSON CC, HOMME JL et al.: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. (2000) 60(13):3504-3513.
  • FANG Y, VILELLA-BACH M, BACHMANN R, FLANIGAN A, CHEN J: Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science (2001) 294(5548):1942-1945.
  • CHEN Y, ZHENG Y, FOSTER DA: Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene (2003) 22(25):3937-3942.
  • CHEN Y, RODRIK V, FOSTER DA: Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene (2005) 24(4):672-679.
  • HUI L, RODRIK V, PIELAK RM et al.: mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J. Biol. Chem. (2005) 280(43):35829-35835.
  • ZHENG Y, RODRIK V, TOSCHI A et al.: Phospholipase D couples survival and migration signals in stress response of human cancer cells. J. Biol. Chem. (2006) 281(23):15862-15868.
  • CHU M, PATEL MG, PAI J-K, DAS PR, PUAR MS: Sch 53823 and Sch 53825, novel fungal metabolites with phospholipase D inhibitory activity. Bioorg. Med. Chem. Lett. (1996) 6(5):579-584.
  • LUKOWSKI S, LECOMTE M-C, MIRA J-P et al.: Inhibition of Phospholipase D activity by Fodrin: an active role for the cytoskeleton. J. Biol. Chem. (1996) 271:24164-24171.
  • LUKOWSKI S, MIRA JP, ZACHOWSKI A, GENY B: Fodrin inhibits phospholipases A2, C, and D by decreasing polyphosphoinositide cell content. BBRC (1998) 248:278-284.
  • CHUNG J-K, SEKIYA F, KANG H-S et al.: Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. (1997) 272:15980-15985.
  • LEE C, KANG H-S, CHUNG J-K et al.: Inhibition of phospholipase D by clathrin assembly protein 3(AP3). J. Biol. Chem. (1997) 272:15986-15992.
  • ABOUSALHAM A, LIOSSIS C, O’BRIEN L, BRINDLEY DN: Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J. Biol. Chem. (1997) 272(2):1069-1075.
  • NAKAMURA T, ABE A, BALAZOVICH KJ et al.: Ceramide regulates oxidant release in adherent human neutrophils. J. Biol. Chem. (1994) 269(28):18384-18389.
  • YOSHIMURA S, SAKAI H, OHGUCHI K et al.: Changes in the activity and mRNA levels of phospholipase D during ceramide-induced apoptosis in rat C6 glial cells. J. Neurochem. (1997) 69(2):713-720.
  • JENCO JM, RAWLINGSON A, DANIELS B, MORRIS AJ: Regulation of phospholipase D2 – selective inhibtion of mammalian phospholipase D isoforms by α- and β-synucleins. Biochemistry (1998) 37:4901-4909.
  • PAYTON JE, PERRIN RJ, WOODS WS, GEORGE JM: Structural determinants of PLD2 inhibition by α-synuclein. J. Mol. Biol. (2004) 337(4):1001-1009.
  • LAVEDAN C: The synuclein family. Genome Res. (1998) 8(9):871-880.
  • OUTEIRO TF, LINDQUIST S: Yeast cells provide insight into α-synuclein biology and pathobiology. Science (2003) 302(5651):1772-1775.
  • BJORNSTI MA, HOUGHTON PJ: The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer (2004) 4(5):335-348.
  • KANFER JN, HATTORI H, ORIHEL D: Reduced phospholipase D activity in brain tissue samples from Alzheimer’s disease patients. Ann. Neurol. (1986) 20(2):265-267.
  • KANFER JN, SINGH IN, PETTEGREW JW, MCCARTNEY DG, SORRENTINO G: Phospholipid metabolism in Alzheimer’s disease and in a human cholinergic cell. J. Lipid Mediat. Cell. Signal. (1996) 14(1-3):361-363.
  • JIN JK, KIM NH, LEE YJ et al.: Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer’s disease patients. Neurosci. Lett. (2006) 407(3):263-267.
  • MORARU, II, POPESCU LM, MAULIK N, LIU X, DAS DK: Phospholipase D signaling in ischemic heart. Biochim. Biophys. Acta (1992) 1139(1-2):148-154.
  • YU CH, PANAGIA V, TAPPIA PS et al.: Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure. Biochim. Biophys. Acta (2002) 1584(1):65-72.
  • RYDZEWSKA G, RIVARD N, MORISSET J: Dynamics of pancreatic tyrosine kinase and phospholipase D activities in the course of cerulein-induced acute pancreatitis and during regeneration. Pancreas (1995) 10(4):382-388.
  • UCHIDA N, OKAMURA S, NAGAMACHI Y, YAMASHITA S: Increased phospholipase D activity in human breast cancer. J. Cancer Res. Clin. Oncol. (1997) 123(5):280-285.
  • NOH D, AHN S, LEE R et al.: Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. (2000) 161(2):207-214.
  • UCHIDA N, OKAMURA S, KUWANO H: Phospholipase D activity in human gastric carcinoma. Anti-Cancer Res. (1999) 19(1B):671-675.
  • ZHAO Y, EHARA H, AKAO Y et al.: Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem. Biophys. Res. Commun. (2000) 278(1):140-143.
  • YAMADA Y, HAMAJIMA N, KATO T et al.: Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J. Mol. Med. (2003) 81(2):126-131.
  • ARIDOR M, HANNAN LA: Traffic jams II: an update of diseases of intracellular transport. Traffic (2002) 3(11):781-790.
  • VIONNET N, HANI EL H, DUPONT S et al.: Genomewide search for Type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a Type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. (2000) 67(6):1470-1480.
  • CHENG JC, MOORE TB, SAKAMOTO KM: RNA interference and human disease. Mol. Genet. Metab. (2003) 80(1-2):121-128.
  • LAGE H: Potential applications of RNA interference technology in the treatment of cancer. Fut. Oncol. (2005) 1(1):103-113.
  • SAH DW: Therapeutic potential of RNA interference for neurological disorders. Life Sci. (2006) 79(19):1773-1780.
  • RAOUL C, BARKER SD, AEBISCHER P: Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther. (2006) 13(6):487-495.
  • DEVI GR: siRNA-based approaches in cancer therapy. Cancer Gene Ther. (2006) 13(9):819-829.
  • DYKXHOORN DM, PALLISER D, LIEBERMAN J: The silent treatment: siRNAs as small molecule drugs. Gene Ther. (2006) 13(6):541-552.
  • XIA H, MAO Q, PAULSON HL, DAVIDSON BL: siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. (2002) 20(10):1006-1010.
  • KOO SH, SATOH H, HERZIG S et al.: PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med. (2004) 10(5):530-534.
  • SORENSEN DR, LEIRDAL M, SIOUD M: Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. (2003) 327(4):761-766.
  • LANDEN CN, JR., CHAVEZ-REYES A, BUCANA C et al.: Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. (2005) 65(15):6910-6918.
  • SONG E, ZHU P, LEE SK et al.: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. (2005) 23(6):709-717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.