306
Views
49
CrossRef citations to date
0
Altmetric
Review

The therapeutic uses of chromatin-modifying agents

Pages 835-851 | Published online: 15 May 2007

Bibliography

  • LUGER K, MADER AW, RICHMOND RK, SARGENT DF, RICHMOND TJ: Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature (1997) 389:251-260.
  • WU J, GRUNSTEIN M: 25 Years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. (2000) 25:619-623.
  • HASSIG CA, SCHREIBER SL: Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. (1997) 1:300-308.
  • ZHANG Y, REINBERG D: Transcriptional regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. (2001) 15:2343-2360.
  • BIEL M, WASCHOLOWSKI V, GIANNIS A: Epigenetics – an epicenter of gene regulation: histones and histone-modifying enzymes. Angew. Chem. Int. Edit. (2005) 44:3186-3216.
  • RAPIZZI E, FOSSATI S, MORONI F, CHIARUGI A: Inhibition of poly(ADP-ribose) glycohydrolase by gallotannin selectively upregulates expression of pro-inflammatory genes. Mol. Pharmacol. (2004) 66:890-897.
  • SHI Y, LAN F, MATSON C et al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell (2004) 119:941-953.
  • WHETSTINE JR, NOTTKE A, LAN F et al.: Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell (2006) 125:467-481.
  • STRAHL BD, ALLIS CD: The language of covalent histone modifications. Nature (2000) 403:41-45.
  • SELIGSON DB, HORVATH S, SHI T et al.: Global histone modification patterns predict risk of prostate cancer recurrence. Nature (2005) 435:1262-1266.
  • MARMORSTEIN R: Structure of histone acetyltransferases. J. Mol. Biol. (2001) 311:433-444.
  • SCHILTZ RL, MIZZEN CA, VASSILEV A, COOK RG, ALLIS CD, NAKATANI Y: Overlapping but distinct patterns of histone acetylation by the human co-activators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. (1999) 274:1189-1192.
  • GRANT PA, DUGGAN L, COTE J et al.: Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. (1997) 11:1640-1650.
  • LIU Y, COLOSIMO AL, YANG X-J, LIAO D: Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol. Cell. Biol. (2000) 20:5540-5553.
  • HUBBERT C, GUARDIOLA A, SHAO R et al.: HDAC6 is a microtubule-associated deacetylase. Nature (2002) 417:455-458.
  • CHAN HM, LA THANGUE NB: p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell. Sci. (2001) 114:2363-2373.
  • WANG HG, RIKITAKE Y, CARTER MC et al.: Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. (1993) 67:476-488.
  • PHILLIPS AC, VOUSDEN KH: Acetyltransferases and tumour suppression. Breast Cancer Res. (2000) 2:244-246.
  • PURI PL, SARTORELLI V, YANG XJ et al.: Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell (1997) 1:35-45.
  • MURATA T, KUROKAWA R, KRONES A: Defect of histone acetyltransferase activity of the nuclear transcriptional co-activator CBP in Rubinstein-Taybi syndrome. Hum. Mol. Genet. (2001) 10:1071-1076.
  • YANG XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukaemia and other diseases. Nucleic Acids Res. (2004) 32:959-976.
  • PANAGOPOULOS I, FIORETOS T, ISAKSSON M et al.: Fusion of the MORF and CBP genes in acute myeloid leukaemia with the t(10;16)(q22;p13). Hum. Mol. Gen. (2001) 10:395-404.
  • DEGUCHI K, AYTON PM, CARAPETI M et al.: MOZ-TIF2-induced acute myeloid leukaemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell (2003) 3:259-271.
  • ANZICK SL, KONONEN J, WALKER RL et al.: AIB1, a steroid receptor co-activator amplified in breast and ovarian cancer. Science (1997) 277:965-969.
  • LAU OD, KUNDU TK, SOCCIO RE et al.: HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell (2000) 5:589-595.
  • BALASUBRAMANYAM K, SWAMINATHAN V, RANGANATHAN A, KUNDU TK: Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. (2003) 278:19134-19140.
  • BALASUBRAMANYAM K, ALTAF M, VARIER RA et al.: Polyisoprenylated benzophenone, garcinol, a natural HAT inhibitor represses chromatin transcription and alters global gene expression. J. Biol. Chem. (2004) 279:33716-33726.
  • BALASUBRAMANYAM K, VARIER RA, ALTAF M et al.: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase-dependent chromatin transcription. J. Biol. Chem. (2004) 279:51163-51171.
  • MARCU MG, JUNG Y-J, LEE S et al.: Curcumin is an inhibitor of p300 histone acetyltransferase. Med. Chem. (2006) 2:169-174.
  • MAZUMDER A, RAGHAVAN K, WEINSTEIN J, KOHN KW, POMMIER Y: Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol. (1995) 49:1165-1170.
  • BARTHELEMY S, VERGNES L, MOYNIER M, GUYOT D, LABIDALLE S, BAHRAOUI E: Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of Type 1 immunodeficiency virus long-terminal repeat. Res. Virol. (1998) 149:43-52.
  • TAHER MM, LAMMERING G, HERSHEY C, VALERIE K: Curcumin inhibits ultraviolet light induced human immunodeficiency virus gene expression. Mol. Cell. Biochem. (2003) 254:289-297.
  • LUSIC M, MARCELLO A, CERESETO A, GIACCA M: Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J. (2003) 22:6550-6561.
  • CERESETO A, MANGANARO L, GUTIERREZ MI et al.: Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. (2005) 24:3070-3081.
  • BIEL M, KRETSOVALI A, KARATZALI E, PAPAMATHEAKIS J, GIANNIS A: Design, synthesis and biological evaluation of a small molecule inhibitor of the histone acetyltransferase GCN5. Angew. Chem. Int. Ed. (2004) 43:3974-3976.
  • STIMSON L, ROWLANDS MG, NEWBATT YM et al.: Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol. Cancer Ther. (2005) 4:1521-1532.
  • ORNAGHI P, ROTILI D, SBARDELLA G, MAI A, FILETICI P: A novel Gcn5p inhibitor represses cell growth, gene transcription and histone acetylation in budding yeast. Biochem. Pharmacol. (2005) 70:911-917.
  • MAI A, ROTILI D, ORNAGHI P et al.: Identification of small molecules inhibitors of GCN5 histone acetyltransferase activity. ARKIVOC (2006) viii:24-37.
  • MAI A, ROTILI D, TARANTINO D et al.: Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J. Med. Chem. (2006) 49:6897-6907.
  • CRESS WD, SETO E: Histone deacetylases, transcriptional control, and cancer. J. Cell Physiol. (2000) 184:1-16.
  • NG HH, BIRD A: Histone deacetylases: silencers for hire. Trends Biochem. Sci. (2000) 25:121-126.
  • GROZINGER CM, SCHREIBER SL: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. (2002) 9:3-16.
  • MAI A, MASSA S, ROTILI D et al.: Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev. (2005) 25:261-309.
  • LAHERTY CD, YANG WM, SUN JM, DAVIE JR, SETO E, EISENMAN RN: Histone deacetylase associated with the mSin3 corepressor mediate mad transcriptional repression. Cell (1997) 89:349-356.
  • GRIGNANI F, DE MATTEIS S, NERVI C et al.: Fusion proteins of the retinoic acid receptor-a recruit histone deacetylase in promyelocytic leukaemia. Nature (1988) 391:815-818.
  • GELMETTI V, ZHANG J, FANELLI M, MINUCCI S, PELICCI PG, LAZAR MA: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leucemia fusion partner ETO. Mol. Cell. Biol. (1998) 18:7185-7191.
  • VERDIN E, DEQUIEDT F, KASLER HG: Class II histone deacetylases: versatile regulators. Trends Genet. (2003) 19:286-293.
  • MCKINSEY TA, ZHANG CL, OLSON EN: MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. (2002) 27:40-47.
  • MCKINSEY TA, ZHANG CL, OLSON EN: Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. (2001) 11:497-504.
  • GRUFFAT H, MANET E, SERGEANT A: MEF2-mediated recruitment of class II HDAC at the EBV immediate-early gene BZLF1 links latency and chromatin remodeling. EMBO Rep. (2002) 3:141-146.
  • BLANDER G, GUARENTE L: The Sir2 family of protein deacetylases. Ann. Rev. Biochem. (2004) 73:417-435.
  • BORRA MT, LANGER MR, SLAMA JT, DENU JM: Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry (2004) 43:9877-9887.
  • COHEN HY, MILLER C, BITTERMAN KJ et al.: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (2004) 305:390-392.
  • YOSHIDA M, KIJIMA M, AKITA M, BEPPU T: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. (1990) 265:17174-17179.
  • JOHNSTONE RW: Histone deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discovery (2002) 1:287-299.
  • KELLY WK, O’CONNOR OA, MARKS PA: Histone deacetylase inhibitors: from target to clinical trials. Expert Opin. Investig. Drugs (2002) 11:1695-1713.
  • MILLER TA, WITTER DJ, BELVEDERE S: Histone deacetylase inhibitors. J. Med. Chem. (2003) 46:5097-5116.
  • FINNIN MS, DONIGIAN JR, COHEN A et al.: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature (1999) 401:188-193.
  • SORBERA LA: Epigenetic targets as an approach to cancer therapy and chemoprevention. Drugs Fut. (2006) 31:335-344.
  • MAI A, MASSA S, ROTILI D et al.: Synthesis and biological properties of novel, uracil-containing histone deacetylase inhibitors. J. Med. Chem. (2006) 49:6046-6056.
  • CURTIN M, GLASER K: Histone deacetylase inhibitors: the Abbott experience. Curr. Med. Chem. (2003) 10:2373-2392.
  • GÖTTLICHER M, MINUCCI S, ZHU P et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. (2001) 20:6969-6978.
  • FUMURAI R, MATSUYAMA A, KOBASHI N et al.: FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. (2002) 62:4916-4921.
  • PARK J-H, JUNG Y, KIM TY et al.: Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumour proliferation. Clin. Cancer Res. (2004) 10:5271-5281.
  • FUMURAI R, KOMATSU Y, NISHINO N, KHOCHBIN S, YOSHIDA M, HORINOUCHI S: Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA (2001) 98:87-92.
  • GUARDIOLA AR, YAO T-P: Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem. (2002) 277:3350-3356.
  • WONG JC, HONG R, SCHREIBER SL: Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc. (2003) 125:5586-5587.
  • INOUE S, MAI A, DYER MJS, COHEN GM: Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumour necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. (2006) 66:6785-6792.
  • MAI A, MASSA S, PEZZI R et al.: Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxamides. J. Med. Chem. (2005) 48:3344-3353.
  • SAMBUCETTI LC, FISCHER DD, ZABLUDOFF S et al.: Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. (1999) 274:34940-34947.
  • RUBIN EH, MAZINA KE, AGRAWAL N et al.: A Phase I study evaluating the safety, tolerability, and pharmacokinetics of oral vorinostat (VOR) in patients with advanced cancer. Proc. Am. Assoc. Cancer Res. (AACR) (2006) 47:Abstract 2097.
  • KATO Y, YOSHIMURA K, SHIN T et al.: Synergistic in vivo antitumour effect of the histone deacetylase inhibitor MS-275 in combination with IL-2 in a murine model of renal cell carcinoma. Proc. Am. Assoc. Cancer Res. (AACR) (2006) 47:Abstract 5053.
  • QUIAN X, LAROCHELLE WJ, ARA G, SEHESTED M, LICHESTEIN HS, JEFFERS M: Activity of the HDAC inhibitor, PXD101, used as monotherapy and combination therapy in preclinical NSCLC studies. Proc. Am. Assoc. Cancer Res. (AACR) (2006) 47:Abstract 4743.
  • DARKIN-RATTRAY SJ, GURNETT AM, MYERS RW: Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA (1996) 93:13143-13147.
  • HAN JW, AHN SH, PARK SH et al.: Apicidin: a histone deacetylase inhibitor, inhibits proliferation of tumour cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. (2000) 60:6068-6074.
  • MAI A, MASSA S, CERBARA I, VALENTE S, WALKER LA, TEKWANI BL: Antimalarial and antileishmanial activities of aroyl-pyrrolyl-hydroxyamides: a new class of histone deacetylase inhibitors. Antimicrob. Agents Chemother. (2004) 48:1435-1436.
  • LAMAR SMITH W, EDLIND TD: Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob. Agents Chemother. (2002) 46:3532-3539.
  • MAI A, ROTILI D, MASSA S et al.: Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg. Med. Chem. Lett. (2007) 17:1221-1225.
  • DEMONTE’ D, QUIVY V, COLETTE Y, VAN LINT C: Administration of HDAC inhibitors to reactivate HIV-1 expression in latent cellular reservoirs: implications for the development of therapeutic strategies. Biochem. Pharmacol. (2004) 68:1231-1238.
  • BLANCHARD F, CHIPOY C: Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov. Today (2005) 10:197-204.
  • CAO H: Pharmacological induction of fetal hemoglobin synthesis using histone deacetylase inhibitors. Hematology (2004) 9:223-233.
  • PERRINE SP, RUDOLPH A, FALLER DV: Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc. Natl. Acad. Sci. USA (1988) 85:8540-8542.
  • CAO H, STAMATOYANNOPOULOS G, JUNG M: Induction of human γ globin gene expression by histone deacetylase inhibitors. Blood (2004) 103:701-709.
  • SAHA RN, PAHAN K: HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. (2006) 13:539-550.
  • COSTA E, CHEN Y, DAVIS J et al.: Reelin and schizophrenia: a disease at the interface of genome and epigenome. Mol. Interv. (2002) 2:47-57.
  • MINETTI GC, COLUSSI C, ADAMI R et al.: Functional and morphological recovery of dystropic muscles in mice treated with deacetylase inhibitors. Nat. Med. (2006) 12:1147-1150.
  • GROZINGER CM, CHAO ED, BLACKWELL HE, MOAZED D, SCHREIBER SL: Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotipic screening. J. Biol. Chem. (2001) 276:38837-38843.
  • BEDALOV A, GATBONTON T, IRVINE WP, GOTTSCHLING DE, SIMON JA: Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. USA (2001) 98:15113-15118.
  • BITTERMAN KJ, ANDERSON RM, COHEN HY, LATORRE-ESTEVES M, SINCLAIR DA: Inhibition of silencing and accelerated ageing by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J. Biol. Chem. (2002) 47:45099-45107.
  • TERVO AJ, KYRYLENKO S, NISKANEN P et al.: An in silico approach to discovering novel inhibitors of human sirtuin Type 2. J. Med. Chem. (2004) 47:6292-6298.
  • TERVO AJ, SUURONEN T, KYRYLENKO S et al.: Discovering inhibitors of human sirtuin Type 2: novel structural scaffolds. J. Med. Chem. (2006) 49:7239-7241.
  • TRAPP J, JOCHUM A, MEIER R et al.: Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinases to sirtuin inhibition. J. Med. Chem. (2006) 49:7307-7316.
  • NAPPER AD, HIXON J, MCDONAGH T et al.: Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. (2005) 48:8045-8054.
  • MAI A, MASSA S, LAVU S et al.: Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. (2005) 48:7789-7795.
  • HELTWEG B, GATBONTON T, SCHLER AD et al.: Antitumour activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. (2006) 66:4368-4377.
  • BEDFORD MT, RICHARD S: Arginine methylation: an emerging regulator of protein function. Mol. Cell (2005) 18:263-272.
  • STEWART MD, LI J, WONG J: Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. (2005) 25:2525-2538.
  • FRAGA MF, BALLESTAR E, VILLAR-GAREA A et al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. (2005) 37:391-400.
  • EL MESSAOUDI S, FABBRIZIO E, RODRIGUEZ C et al.: co-activator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the cyclin E1 gene. Proc. Natl. Acad. Sci. USA (2006) 103:13351-13356.
  • HONG H, KAO C, JENG MH et al.: Aberrant expression of CARM1, a transcriptional co-activator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer (2004) 101:83-89.
  • CHENG D, YADAV N, KING RW, SWANSON MS, WEINSTEIN EJ, BEDFORD MT: Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. (2004) 279:23892-23899.
  • GREINER D, BONALDI T, ESKELAND R, ROEMER E, IMHOF A: Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. (2005) 1:143-145.
  • MAI A, VALENTE S, PERRONE A, BROSCH G, BEDFORD MT: Chromatin modifiers as new epigenetic regulators: protein arginine methyltransferase (PRMT) inhibitors. Proceedings of the 19th International Symposium on Medicinal Chemistry. Instambul, Turkey (2006) P179. Drugs Fut. (2006) 31(Suppl. A):131.

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.