182
Views
30
CrossRef citations to date
0
Altmetric
Review

Targeting ischemic brain injury with intravenous immunoglobulin

, PhD, , MD PhD, , PhD & , PhD
Pages 19-29 | Published online: 13 Dec 2007

Bibliography

  • Abe Y. Therapeutic application of intravenous human natural immunoglobulin preparation. Front Biosci 1996;1:e26-e33
  • Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev 2004;1:CD000361
  • Park-Min KH, Serbina NV, Yang W, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 2007;26:67-78
  • Larroche C, Chanseaud Y, Garcia de la Pena-Lefebvre P, et al. Mechanisms of intravenous immunoglobulin action in the treatment of autoimmune disorders. BioDrugs 2002;16:47-55
  • Negi VS, Elluru S, Siberil S, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007;27:233-45
  • Nimmerjahn F, Ravetch JV. The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 2007;204:11-15
  • Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002;59:S13-S21
  • Adams HP Jr. Stroke: a vascular pathology with inadequate management. J Hypertens Suppl 2003;21:S3-S7
  • Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromolecular Med 2005;7:229-42
  • Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000;301:173-87
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391-7
  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431-568
  • Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004;26:884-92
  • Frey JL. Recombinant tissue plasminogen activator (rtPA) for stroke. The perspective at 8 years. Neurologist 2005;11:123-33
  • Ringleb PA, Schellinger PD, Schranz C, et al. Thrombolytic therapy within 3 to 6 hours after onset of ischemic stroke: useful or harmful? Stroke 2002;33:1437-41
  • Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 2004;1:36-45
  • Sapan CV, Reisner HM, Lundblad RL. Antibody therapy (IVIG): evaluation of the use of genomics and proteomics for the study of immunomodulation therapeutics. Vox Sang 2007;92:197-205
  • Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl 2005;11:1469-80
  • Amzel LM, Poljak RJ. Three-dimensional structure of immunoglobulins. Ann Rev Biochem 1979;48:961-97
  • Bayary J, Dasgupta S, Misra N, et al. Intravenous immunoglobulin in autoimmune disorders: an insight into the immunoregulatory mechanisms. Int Immunopharmacol 2006;6:528-34
  • Peakman M, Dayan CM. Antigen-specific immunotherapy for autoimmune disease: fighting fire with fire? Immunology 2001;104:361-6
  • Romagnani S. New therapeutic strategies in allergic diseases. Drugs Today 2003;39:849-65
  • Verhagen J, Blaser K, Akdis CA, et al. Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more. Immunol Allergy Clin North Am 2006;26:207-31
  • Kawamura T. Treatment of IgA nephropathy: corticosteroids, tonsillectomy, and mycophenolate mofetil. Contrib Nephrol 2007;157:37-43
  • Ghobrial IM, Leleu X, Hatjiharissi E, et al. Emerging drugs in multiple myeloma. Expert Opin Emerg Drugs 2007;12:155-63
  • Ben-Efraim S, Keisari Y, Ophir R, et al. Immunopotentiating and immunotherapeutic effects of thymic hormones and factors with special emphasis on thymic humoral factor THF-gamma2. Crit Rev Immunol 1999;19:261-84
  • Riker AI, Radfar S, Liu S, et al. Immunotherapy of melanoma: a critical review of current concepts and future strategies. Expert Opin Biol Ther 2007;7:345-58
  • Eibl MM, Wedgwood RJ. Intravenous immunoglobulin: a review. Immunodefic Rev 1989;1(Suppl):1-42
  • Knapp MJ, Colburn PA. Clinical uses of intravenous immune globulin. Clin Pharm 1990;9:509-29
  • Simon HU, Spath PJ. IVIG–mechanisms of action. Allergy 2003;58:543-52
  • Sandler SG, Tutuncuoglu SO. Immune thrombocytopenic purpura – current management practices. Expert Opin Pharmacother 2004;5:2515-27
  • Satou GM, Giamelli J, Gewitz MH. Kawasaki disease: diagnosis, management, and long-term implications. Cardiol Rev 2007;15:163-9
  • Durandy A, wahn V, Petteway S, et al. Immunoglobulin replacement therapy in primary antibody deficiency diseases–maximizing success. Int Arch Allergy Immunol 2005;136:217-29
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, et al. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol 2007;3:262-72
  • Sherer Y, Shoenfeld Y. Intravenous immunoglobulin for immunomodulation of systemic lupus erythematosus. Autoimmun Rev 2006;5:153-5
  • Gold R, Stangel M, Dalakas MC. Drug Insight: the use of intravenous immunoglobulin in neurology–therapeutic considerations and practical issues. Nat Clin Pract Neurol 2007;3:36-44
  • Ruetter A, Luger TA. Efficacy and safety of intravenous immunoglobulin for immune-mediated skin disease: current view. Am J Clin Dermatol 2004;5:153-60
  • Carp HJ, Sapir T, Shoenfeld Y. Intravenous immunoglobulin and recurrent pregnancy loss. Clin Rev Allergy Immunol 2005;29:327-32
  • Lemieux R, Bazin R, Neron S. Therapeutic intravenous immunoglobulins. Mol Immunol 2005;42:839-48
  • Hughes RA, Cornblath DR. Guillain-Barre syndrome. Lancet 2005;366:1653-66
  • Nobile-Orazio E, Terenghi F. IVIg in idiopathic autoimmune neuropathies: analysis in the light of the latest results. J Neurol 2005;252(Suppl 1):I7-I23
  • Van Schaik IN, Van den Berg LH, De Haan R, et al. Intravenous immunoglobulin for multifocal motor neuropathy. Cochrane Database Syst Rev 2005;2:CD004429
  • Latremouille C, Genevaz D, Hu MC, et al. Normal human immunoglobulins for intravenous use (IVIg) delay hyperacute xenograft rejection through F(ab’)2-mediated anti-complement activity. Clin Exp Immunol 1997;110:122-6
  • Stangel M, Compston A, Scolding NJ. Oligodendroglia are protected from antibody-mediated complement injury by normal immunoglobulins (“IVIg”). J Neuroimmunol 2000;103:195-201
  • Clynes R. Immune complexes as therapy for autoimmunity. J Clin Invest 2005;115:25-7
  • Sapir T, Shoenfeld Y. Facing the enigma of immunomodulatory effects of intravenous immunoglobulin. Clin Rev Allergy Immunol 2005;29:185-99
  • Ibanez C, Montoro-Ronsano JB. Intravenous immunoglobulin preparations and autoimmune disorders: mechanisms of action. Curr Pharm Biotechnol 2003;4:239-47
  • Ephrem A, Misra N, Hassan G, et al. Immunomodulation of autoimmune and inflammatory diseases with intravenous immunoglobulin. Clin Exp Med 2005;5:135-40
  • Janke AD, Giuliani F, Yong VW. IVIg attenuates T cell-mediated killing of human neurons. J Neuroimmunol 2006;177:181-8
  • Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998;282:490-3
  • Prasad NK, Papoff G, Zeuner A, et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol 1998;161:3781-90
  • Terenghi F, Allaria S, Nobile-Orazio E. Circulating levels of cytokines and their modulation by intravenous immunoglobulin in multifocal motor neuropathy. J Peripher Nerv Syst 2006;11:67-71
  • Zhu KY, Feferman T, Maiti PK, et al. Intravenous immunoglobulin suppresses experimental myasthenia gravis: immunological mechanisms. J Neuroimmunol 2006;176:187-97
  • Sewell WA, North ME, Cambronero R, et al. In vivo modulation of cytokine synthesis by intravenous immunoglobulin. Clin Exp Immunol 1999;116:509-15
  • Andersson UG, Bjork L, Skansen-Saphir U, et al. Down-regulation of cytokine production and IL-2 receptor expression by pooled human IgG. Immunology 1993;79:211-16
  • Toungouz M, Denys CH, De Groote D, et al. In vitro inhibition of tumour necrosis factor-alpha and interleukin-6 production by intravenous immunoglobulins. Br J Haematol 1995;89:698-703
  • Andersson J, Skansen-Saphir U, Sparrelid E, et al. Intravenous immune globulin affects cytokine production in T lymphocytes and monocytes/macrophages. Clin Exp Immunol 1996;104(Suppl 1):10-20
  • Ott VL, Fong DC, Cambier JC. Fc gamma RIIB as a potential molecular target for intravenous gamma globulin therapy. J Allergy Clin Immunol 2001;108(4 Suppl):S95-S98
  • Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 2006;12:688-92
  • Hansen RJ, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 2003;92:1206-15
  • Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 1994;94:1729-35
  • Basta M, Van Goor F, Luccioli S, et al. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 2003;9:431-8
  • Vivanco F, Munoz E, Vidarte L, et al. The covalent interaction of C3 with IgG immune complexes. Mol Immunol 1999;36:843-52
  • Lutz HU, Stammler P, Bianchi V, et al. Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood 2004;103:465-72
  • Basta M, Fries LF, Frank MM. High doses of intravenous Ig inhibit in vitro uptake of C4 fragments onto sensitized erythrocytes. Blood 1991;77:376-80
  • Crow AR, Song S, Semple JW, et al. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 2007;109:155-8
  • Arend WP, Leung DY. IgG induction of IL-1 receptor antagonist production by human monocytes. Immunol Rev 1994;139:71-8
  • Blasczyk R, Westhoff U, Grosse-Wilde H. Soluble CD4, CD8, and HLA molecules in commercial immunoglobulin preparations. Lancet 1993;341:789-90
  • Grosse-Wilde H, Blasczyk R, Westhoff U. Soluble HLA class I and class II concentrations in commercial immunoglobulin preparations. Tissue Antigens 1992;39:74-7
  • Vassilev T, Gelin C, Kaveri SV, et al. Antibodies to the CD5 molecule in normal human immunoglobulins for therapeutic use (intravenous immunoglobulins, IVIg). Clin Exp Immunol 1993;92:369-72
  • Caccavelli L, Field AC, Betin V, et al. Normal IgG protects against acute graft-versus-host disease by targeting CD4(+)CD134(+) donor alloreactive T cells. Eur J Immunol 2001;31:2781-90
  • Bendtzen K, Svenson M, Hansen M. Autoantibodies to cytokines in IVIG. J Rheumatol 1993;20:2176-7
  • Rigal D, Vermot-Desroches C, Heitz S, et al. Effects of intravenous immunoglobulins (IVIG) on peripheral blood B, NK, and T cell subpopulations in women with recurrent spontaneous abortions: specific effects on LFA-1 and CD56 molecules. Clin Immunol Immunopathol 1994;71:309-14
  • Abe Y, Horiuchi A, Miyake M, et al. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev 1994;139:5-19
  • Huang JL, Lee WY, Chen LC, et al. Changes of serum levels of interleukin-2, intercellular adhesion molecule-1, endothelial leukocyte adhesion molecule-1 and Th1 and Th2 cell in severe atopic dermatitis after intravenous immunoglobulin therapy. Ann Allergy Asthma Immunol 2000;84:345-52
  • Gill V, Doig C, Knight D, et al. Targeting adhesion molecules as a potential mechanism of action for intravenous immunoglobulin. Circulation 2005;112:2031-9
  • Lapointe BM, Herx LM, Gill V, et al. IVIg therapy in brain inflammation: etiology-dependent differential effects on leucocyte recruitment. Brain 2004;127:2649-56
  • Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromol Med 2003;3:65-94
  • Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 2004;61:657-68
  • Mattson MP. Neuroprotective signal transduction: relevance to stroke. Neurosci Biobehav Rev 1997;21:193-206
  • Love S. Oxidative stress in brain ischemia. Brain Pathol 1999;9:119-31
  • Tang SC, Arumugam TV, Cutler RG, et al. Neuroprotective actions of a histidine analogue in models of ischemic stroke. J Neurochem 2007;101:729-36
  • Okun E, Arumugam TV, Tang SC, et al. The organotellurium compound ammonium trichloro(dioxoethylene-0,0′) tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice. J Neurochem 2007;102:1232-41
  • Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 2000;36:483-506
  • Hall ED. Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 1995;134(Suppl):79-83
  • Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 1998;56:149-71
  • Dawson VL, Dawson TM. Nitric oxide in neurodegeneration. Prog Brain Res 1998;118:215-29
  • Ishikawa M, Zhang JH, Nanda A, et al. Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front Biosci 2004;9:1339-47
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007;184:53-68
  • Lai AY, Todd KG. Microglia in cerebral ischemia: molecular actions and interactions. Can J Physiol Pharmacol 2006;84:49-59
  • Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 2006;7:194-206
  • Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 2004;19:151-67
  • Del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 2000;98:73-81
  • Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006;113:2105-12
  • Arumugam TV, Shiels IA, Woodruff TM, et al. The role of the complement system in ischemia-reperfusion injury. Shock 2004;21:401-9
  • Arumugam TV, Magnus T, Woodruff TM, et al. Complement mediators in ischemia-reperfusion injury. Clin Chim Acta 2006;374:33-45
  • Vasthare US, Barone FC, Sarau HM, et al. Complement depletion improves neurological function in cerebral ischemia. Brain Res Bull 1998;45:413-19
  • Figueroa E, Gordon LE, Feldhoff PW, et al. The administration of cobra venom factor reduces post-ischemic cerebral injury in adult and neonatal rats. Neurosci Lett 2005;380:48-53
  • De Simoni MG, Rossi E, Storini C, et al. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. Am J Pathol 2004;164:1857-63
  • Heimann A, Takeshima T, Horstick G, et al. C1-esterase inhibitor reduces infarct volume after cortical vein occlusion. Brain Res 1999;838:210-13
  • Storini C, Rossi E, Marrella V, et al. C1-inhibitor protects against brain ischemia-reperfusion injury via inhibition of cell recruitment and inflammation. Neurobiol Dis 2005;19:10-17
  • Huang J, Kim LJ, Mealey R, et al. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science 1999;285:595-9
  • Mocco J, Mack WJ, Ducruet AF, et al. Preclinical evaluation of the neuroprotective effect of soluble complement receptor type 1 in a nonhuman primate model of reperfused stroke. J Neurosurg 2006;105:595-601
  • Mocco J, Mack WJ, Ducruet AF, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 2006;99:209-17
  • Arumugam TV, Tang SC, Lathia JD, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci USA 2007;104:14104-9
  • Finch AM, Vogen SM, Sherman SA, et al. Biologically active conformer of the effector region of human C5a and modulatory effects of N-terminal receptor binding determinants on activity. J Med Chem 1997;40:877-84
  • Kohl J, Wills-Karp M. Complement regulates inhalation tolerance at the dendritic cell/T cell interface. Mol Immunol 2007;44:44-56
  • Guo RF, Ward PA. Role of C5a in inflammatory responses. Ann Rev Immunol 2005;23:821-52
  • Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med 2002;33:303-10
  • Arumugam TV, Salter JW, Chidlow JH, et al. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 2004;287:H2555-H2560
  • Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 2003;62:127-36
  • Stangel M, Compston A. Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J Neuroimmunol 2001;112:63-71
  • White DA, Leonard MC. Acute stroke with high-dose intravenous immune globulin. Am J Health Syst Pharm 2007;64:1611-4
  • Marie I, Maurey G, Herve F, et al. Intravenous immunoglobulin-associated arterial and venous thrombosis; report of a series and review of the literature. Br J Dermatol 2006;155:714-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.