977
Views
47
CrossRef citations to date
0
Altmetric
Review

CD70 as a therapeutic target in human malignancies

, PhD FRCPath
Pages 341-351 | Published online: 13 Feb 2008

Bibliography

  • Aggarwal BB. Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3(9):745-56
  • Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76(6):959-62
  • Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 1995;85(12):3378-404
  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104(4):487-501
  • Renshaw BR, Fanslow III WC, Armitage RJ, et al. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994;180(5):1889-900
  • Davidson WF, Giese T, Fredrickson TN. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp Med 1998;187(11):1825-38
  • Gulino AV, Notarangelo LD. Hyper IgM syndromes. Curr Opin Rheumatol 2003;15(4):422-9
  • Goodwin RG, Alderson MR, Smith CA, et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 1993;73:447-56
  • Bowman MR, Crimmins MA, Yetz-Aldape J, et al. The cloning of CD70 and its identification as the ligand for CD27. J Immunol 1994;152:1756-61
  • Peitsch MC, Tschopp J. Comparative molecular modelling of the Fas-ligand and other members of the TNF family. Mol Immunol 1995;32:761-72
  • Camerini D, Walz G, Loenen WA, et al. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol 1991;147(9):3165-9
  • Hintzen RQ, Van Lier RA, Kuijpers KC, et al. Elevated levels of a soluble form of the T cell activation antigen CD27 in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 1991;35(1-3):211-7
  • Prasad KV, Ao Z, Yoon Y, et al. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci USA 1997;94(12):6346-51
  • Akiba H, Nakano H, Nishinaka S, et al. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-κB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-κB-inducing kinase. J Biol Chem 1998;273(21):13353-8
  • Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-κB activation pathways by NF-κB-inducing kinase. Immunity 2004;21(4):477-89
  • Lens SM, Keehnen RM, Van Oers M, et al. Identification of a novel subpopulation of germinal center B cells characterized by expression of IgD and CD70. Eur J Immunol 1996;26:1007-11
  • Watts TH. TNF/TNFR family members in costimulation of T cell responses. Ann Rev Immunol 2005;23:23-68
  • Keller AM, Groothuis TA, Veraar EA, et al. Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proc Natl Acad Sci USA 2007;104:5989-94
  • Hishima T, Fukayama M, Hayashi Y, et al. CD70 expression in thymic carcinoma. Am J Surg Pathol 2000;24:742-6
  • Hintzen RQ, Lens SM, Beckmann MP, et al. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol 1994;152:1762-73
  • Laouar A, Haridas V, Vargas D, et al. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol 2005;6:698-706
  • Hintzen RQ, Lens SM, Koopman G, et al. CD70 represents the human ligand for CD27. Int Immunol 1994;6:477-80
  • Lens SM, Baars PA, Hooibrink B, et al. Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunology 1997;90:38-45
  • Hintzen RQ, de Jong R, Lens SM, et al. CD27: marker and mediator of T-cell activation? Immunol Today 1994;15:307-11
  • Lens SM, Tesselaar K, van Oers MH, et al. Control of lymphocyte function through CD27-CD70 interactions. Semin Immunol 1998;10:491-9
  • de Jong R, Loenen WA, Brouwer M, et al. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol 1991;146:2488-94
  • Hintzen RQ, De Jong R, Lens SM, et al. Regulation of CD27 expression on subsets of mature T-lymphocytes. J Immunol 1993;151:2426-35
  • van Lier RA, Borst J, Vroom TM, et al. Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J Immunol 1987;139:1589-96
  • Hintzen RQ, de Jong R, Hack CE, et al. A soluble form of the human T cell differentiation antigen CD27 is released after triggering of the TCR/CD3 complex. J Immunol 1991;147:29-35
  • Jacquot S, Kobata T, Iwata S, et al. CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses: enhancement of plasma cell differentiation by CD27 signaling. J Immunol 1997;159:2652-7
  • Kobata T, Jacquot S, Kozlowski S, et al. CD27–CD70 interactions regulate B-cell activation by T cells. Proc Natl Acad Sci USA 1995;92:11249-53
  • Hendriks J, Gravestein LA, Tesselaar K, et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 2000;1:433-40
  • Sugita K, Hirose T, Rothstein DM, et al. CD27, a member of the nerve growth factor receptor family, is preferentially expressed on CD45RA+ CD4 T cell clones and involved in distinct immunoregulatory functions. J Immunol 1992;149:3208-16
  • Hintzen RQ, Lens SM, Lammers K, et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol 1995;154:2612-23
  • Xiao Y, Hendriks J, Langerak P, et al. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J Immunol 2004;172:7432-41
  • Agematsu K, Nagumo H, Oguchi Y, et al. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 1998;91:173-80
  • Takeda K, Oshima H, Hayakawa Y, et al. CD27-mediated activation of murine NK cells. J Immunol 2000;164:1741-5
  • Orengo AM, Cantoni C, Neglia F, et al. Reciprocal expression of CD70 and of its receptor, CD27, in human long term-activated T and natural killer (NK) cells: inverse regulation by cytokines and role in induction of cytotoxicity. Clin Exp Immunol 1997;107:608-13
  • Arens R, Tesselaar K, Baars PA, et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFN-γ-mediated B cell depletion. Immunity 2001;15:801-12
  • Arens R, Schepers K, Nolte MA, et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J Exp Med 2004;199:1595-605
  • Hendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 2003;198(9):1369-80
  • Nakajima A, Oshima H, Nohara C, et al. Involvement of CD70–CD27 interactions in the induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2000;109:188-96
  • Aramaki O, Shirasugi N, Akiyama Y, et al. CD27/CD70, CD134/CD134 ligand, and CD30/CD153 pathways are independently essential for generation of regulatory cells after intratracheal delivery of alloantigen. Transplantation 2003;76(5):772-6
  • Nieland JD, Graus YF, Dortmans YE, et al. CD40 and CD70 co-stimulate a potent in vivo antitumor T cell response. J Immunother 1998;21(3):225-36
  • Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002;3(1):83-90
  • Gruss HJ, Kadin ME. Pathophysiology of Hodgkin's disease: functional and molecular aspects. Baillieres Clin Haematol 1996;9:417-46
  • Lens SM, Drillenburg P, Den Drijver BF, et al. Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol 1999;106:491-503
  • Hunter Z, Branagan AR, Santos DD, et al. High levels of soluble immunoregulatory receptors in patients with Waldenström's macroglobulinemia. Blood 2004;104:Abstract 4881
  • Nilsson A, De Milito A, Mowafi F, et al. Expression of CD27-CD70 on early B cell progenitors in the bone marrow: implication for diagnosis and therapy of childhood ALL. Exp Hematol 2005;33(12):1500-7
  • Tesselaar K, Xiao Y, Arens R, et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol 2003;170:33-40
  • Bahler DW, Levy R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci USA 1992;89:6770-4
  • Bahler DW, Zelenetz AD, Chen TT, et al. Antigen selection in human lymphomagenesis. Cancer Res 1992;52:5547s-5551s
  • Agathanggelou A, Niedobitek G, Chen R, et al. Expression of immune regulatory molecules in Epstein-Barr virus-associated nasopharyngeal carcinomas with prominent lymphoid stroma. Evidence for a functional interaction between epithelial tumor cells and infiltrating lymphoid cells. Am J Pathol 1995;147:1152-60
  • Held-Feindt J, Mentlein R. CD70/CD27 ligand, a member of the TNF family, is expressed in human brain tumors. Int J Cancer 2002;98:352-6
  • Wischhusen J, Jung G, Radovanovic I, et al. Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. Cancer Res 2002;62:2592-9
  • Junker K, Hindermann W, Von Eggeling F, et al. CD70: a new tumor specific biomarker for renal cell carcinoma. J Urol 2005;173:2150-3
  • Diegmann J, Junker K, Gerstmayer B, et al. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. Eur J Cancer 2005;41:1794-801
  • Law CL, Gordon KA, Toki BE, et al. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res 2006;66:2328-37
  • Miller RA, Maloney DG, Warnke R, et al. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982;306(9):517-22
  • McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998;16(8):2825-33
  • Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002;100(3):768-73
  • Leonard JP, Link BK. Immunotherapy of non-Hodgkin's lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab). Semin Oncol 2002;29(1 Suppl 2):81-6
  • Coiffier B. Rituximab therapy in malignant lymphoma. Oncogene 2007;26(25):3603-13
  • Nishio M, Endo T, Fujimoto K, et al. Persistent panhypogammaglobulinemia with selected loss of memory B cells and impaired isotype expression after rituximab therapy for post-transplant EBV-associated autoimmune hemolytic anemia. Eur J Haematol 2005;75(6):527-9
  • van Der Kolk LE, Baars JW, Prins MH, et al. Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood 2002;100(6):2257-9
  • Israel BF, Gulley M, Elmore S, et al. Anti-CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas. Mol Cancer Ther 2005;4(12):2037-44
  • Di Gaetano N, Cittera E, Nota R, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003;171(3):1581-7
  • McEarchern JA, Oflazoglu E, Francisco L, et al. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood 2007;109(3):1185-92
  • McEarchern JA, McDonagh CF, Smith LM, et al. SGN-70, a humanized anti-CD70 antibody, targets CD70-expressing hematologic tumors. Blood 2006;108(11):(ASH Annual Meeting Abstracts), 2492
  • Uchida J, Hamaguchi Y, Oliver JA, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004;199:1659-69
  • Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 2005;174:817-26
  • Jeffrey SC, Andreyka JB, Bernhardt SX, et al. Development and properties of β-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug Chem 2006;17(3):831-40
  • de Arruda M, Cocchiaro CA, Nelson CM, et al. LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 1995;55(14):3085-92
  • Mohammad RM, Limvarapuss C, Wall NR, et al. A new tubulin polymerization inhibitor, auristatin PE, induces tumor regression in a human Waldenstrom's macroglobulinemia xenograft model. Int J Oncol 1999;15(2):367-72
  • Turner T, Jackson WH, Pettit GR, et al. Treatment of human prostate cancer cells with dolastatin 10, a peptide isolated from a marine shell-less mollusc. Prostate 1998;34(3):175-81
  • Muolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and response to trastuzumab-based treatment in patients with Her-2/nue-positive metastatic breast cancer. Proc AACR (2007) abst 4188. J Clin Oncol 2006;24(18S):13090
  • Weiner LM. Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 2007;7(9):701-6
  • Anderson KC. Lenalidomide and thalidomide: mechanisms of action – similarities and differences. Semin Hematol 2005;42(4 Suppl 4):S3-8
  • Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, et al. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 2005;11(16):5984-92
  • Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 2005;65(24):11712-20
  • Hernandez-Ilizaliturri FJ, Jupudy V, Reising S, et al. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma 2005;46(12):1775-84
  • Witzig TE, Flinn IW, Gordon LI, et al. Treatment with lbritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J Clin Oncol 2002;20(15):3262-9
  • Fisher RI, Kaminski MS, Wahl RL, et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin's lymphomas. J Clin Oncol 2005;23(30):7565-73
  • Sievers EL. Antibody-targeted chemotherapy of acute myeloid leukemia using gemtuzumab ozogamicin (Mylotarg). Blood Cells Mol Dis 2003;31(1):7-10
  • Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005;104(7):1442-52
  • Chahlavi A, Rayman P, Richmond AL, et al. Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 2005;65:5428-38
  • Diegmann J, Junker K, Loncarevic IF, et al. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia 2006;8:933-8
  • Smyth GP, Stapleton PP, Barden CB, et al. Renal cell carcinoma induces prostaglandin E2 and T-helper type 2 cytokine production in peripheral blood mononuclear cells. Ann Surg Oncol 2003;10(4):455-62
  • Aulwurm S, Wischhusen J, Friese M, et al. Immune stimulatory effects of CD70 override CD70-mediated immune cell apoptosis in rodent glioma models and confer long-lasting antiglioma immunity in vivo. Int J Cancer 2006;118:1728-35
  • Yang ZZ, Novak AJ, Ziesmer SC, et al. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25- T cells. Blood 2007;110(7):2537-44
  • Tournilhac O, Santos DD, Xu L, et al. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol 2006;17:1275-82
  • Hunter ZR, Branagan AR, Santos DD, et al. High levels of soluble immunoregulatory receptors in patients with Waldenstrom's macroglobulinemia. Blood 2004;104:Abstract 4881
  • Hatjiharissi E, Ho AW, Xu L, et al. Preclinical in vitro and in vivo evidence support a therqpeutic role for the CD70 directed monoclonal antibody (SGN-70) in Waldenstrom's Macroglobulinemia (WM). Blood 2006;108:Abstract 2490
  • Zambello R, Trentin L, Facco M, et al. Analysis of TNF-receptor and ligand superfamily molecules in patients with lymphoproliferative disease of granular lymphocytes. Blood 2000;96(2):647-54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.