419
Views
39
CrossRef citations to date
0
Altmetric
Review

The therapeutic potential of neuronal KV7 (KCNQ) channel modulators: an update

, PhD
Pages 565-581 | Published online: 15 Apr 2008

Bibliography

  • Gribkoff VK. The therapeutic potential of neuronal KCNQ channel modulators. Expert Opin Ther Targets 2003;7:737-48
  • Beisel KW, Rocha-Sanchez SM, Morris KA, et al. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 2005;25:9285-93
  • Coucke PJ, Van HP, Kelley PM, et al. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999;8:1321-8
  • Kharkovets T, Dedek K, Maier H, et al. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 2006;25:642-52
  • Kubisch C, Schroeder BC, Friedrich T, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999;96:437-46
  • Van HP, Coucke PJ, Ensink RJ, et al. Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am J Med Genet 2000;93:184-7
  • Xu T, Nie L, Zhang Y, et al. Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. J Biol Chem 2007;282:23899-909
  • Van CG, Coucke PJ, Akita J, et al. A mutational hot spot in the KCNQ4 gene responsible for autosomal dominant hearing impairment. Hum Mutat 2002;20:15-9
  • Howard RJ, Clark KA, Holton JM, et al. Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 2007;53:663-75
  • Wehling C, Beimgraben C, Gelhaus C, et al. Self-assembly of the isolated KCNQ2 subunit interaction domain. FEBS Lett 2007;581:1594-8
  • Biervert C, Steinlein OK. Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions. Hum Genet 1999;104:234-40
  • Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279:403-6
  • Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18:53-5
  • Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18:25-9
  • Yang WP, Levesque PC, Little WA, et al. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem 1998;273:19419-23
  • Brown BS, Yu SP. Modulation and genetic identification of the M channel. Prog Biophys Mol Biol 2000;73:135-66
  • Wang HS, Pan Z, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 1998;282:1890-3
  • Adams PR, Brown DA, Constanti A. Pharmacological inhibition of the M-current. J Physiol 1982;332:223-62
  • Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 1980;283:673-6
  • Adams PR, Brown DA, Jones SW. Substance P inhibits the M-current in bullfrog sympathetic neurones. Br J Pharmacol 1983;79:330-3
  • Filippov AK, Choi RC, Simon J, et al. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci 2006;26:9340-8
  • Jia Q, Jia Z, Zhao Z, et al. Activation of epidermal growth factor receptor inhibits KCNQ2/3 current through two distinct pathways: membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation. J Neurosci 2007;27:2503-12
  • Schweitzer P. Cannabinoids decrease the K(+) M-current in hippocampal CA1 neurons. J Neurosci 2000;20:51-8
  • Shapiro MS, Wollmuth LP, Hille B. Angiotensin II inhibits calcium and M current channels in rat sympathetic neurons via G proteins. Neuron 1994;12:1319-29
  • Wallace DJ, Chen C, Marley PD. Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. J Physiol 2002;540:921-39
  • Suh BC, Hille B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 2002;35:507-20
  • Zhang H, Craciun LC, Mirshahi T, et al. PIP 2; activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003;37:963-75
  • Main MJ, Cryan JE, Dupere JR, et al. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 2000;58:253-62
  • Schroder RL, Jespersen T, Christophersen P, et al. KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology 2001;40:888-98
  • Tatulian L, Delmas P, Abogadie FC, et al. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 2001;21:5535-45
  • Wickenden AD, Yu W, Zou A, et al. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 2000;58:591-600
  • Boscia F, Annunziato L, Taglialatela M. Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 2006;51:283-94
  • Mastronardi P, D'Onofrio M, Scanni E, et al. Analgesic activity of flupirtine maleate: a controlled double-blind study with diclofenac sodium in orthopaedics. J Int Med Res 1988;16:338-48
  • Ringe JD, Miethe D, Pittrow D, et al. Analgesic efficacy of flupirtine in primary care of patients with osteoporosis related pain. A multivariate analysis. Arzneimittelforschung 2003;53:496-502
  • Schenzer A, Friedrich T, Pusch M, et al. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 2005;25:5051-60
  • Tatulian L, Brown DA. Effect of the KCNQ potassium channel opener retigabine on single KCNQ2/3 channels expressed in CHO cells. J Physiol 2003;549:57-63
  • Gribkoff VK, Starrett JE Jr, Dworetzky SI, et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 2001;7:471-7
  • Dupuis DS, Schroder RL, Jespersen T, et al. Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. Eur J Pharmacol 2002;437:129-37
  • Jensen BS. BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev 2002;8:353-60
  • Schroder RL, Strobaek D, Olesen SP, et al. Voltage-independent KCNQ4 currents induced by (+/-)BMS-204352. Pflugers Arch 2003;446:607-16
  • Hewawasam P, Chen N, Ding M, et al. The synthesis and structure-activity relationships of 3-amino-4-benzylquinolin-2-ones; discovery of novel KCNQ2 channel openers. Bioorg Med Chem Lett 2004;14:1615-8
  • L'Heureux A, Martel A, He H, et al. (S,E)-N-[1-(3-heteroarylphenyl)ethyl]-3-(2-fluorophenyl)acrylamides: synthesis and KCNQ2 potassium channel opener activity. Bioorg Med Chem Lett 2005;15:363-6
  • Wu YJ, Sun LQ, He H, et al. Synthesis and KCNQ2 opener activity of N-(1-benzo[1,3]dioxol-5-yl-ethyl, N-[1-(2,3-dihydro-benzofuran-5-yl)-ethyl, and N-[1-(2,3-dihydro-1H-indol-5-yl)-ethyl acrylamides. Bioorg Med Chem Lett 2004;14:4533-7
  • Wu YJ, Dworetzky SI. Recent developments on KCNQ potassium channel openers. Curr Med Chem 2005;12:453-60
  • Wu YJ, Boissard CG, Chen J, et al. (S)-N-[1-(4-cyclopropylmethyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide is a potent and efficacious KCNQ2 opener which inhibits induced hyperexcitability of rat hippocampal neurons. Bioorg Med Chem Lett 2004;14:1991-5
  • Wu YJ, Boissard CG, Greco C, et al. (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]- 3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine. J Med Chem 2003;46:3197-200
  • Costa AM, Brown BS. Inhibition of M-current in cultured rat superior cervical ganglia by linopirdine: mechanism of action studies. Neuropharmacology 1997;36:1747-53
  • Zaczek R, Chorvat RJ, Saye JA, et al. Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. J Pharmacol Exp Ther 1998;285:724-30
  • Wang HS, Brown BS, McKinnon D, et al. Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol Pharmacol 2000;57:1218-23
  • Zhu G, Okada M, Murakami T, et al. Dysfunction of M-channel enhances propagation of neuronal excitability in rat hippocampus monitored by multielectrode dish and microdialysis systems. Neurosci Lett 2000;294:53-7
  • Adams PR, Brown DA, Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol 1982;330:537-72
  • Constanti A, Brown DA. M-Currents in voltage-clamped mammalian sympathetic neurones. Neurosci Lett 1981;24:289-94
  • Selyanko AA, Brown DA. Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 1996;16:151-62
  • Stansfeld CE, Marsh SJ, Gibb AJ, et al. Identification of M-channels in outside-out patches excised from sympathetic ganglion cells. Neuron 1993;10:639-54
  • Hirose S, Zenri F, Akiyoshi H, et al. A novel mutation of KCNQ3 (c.925T→C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol 2000;47:822-6
  • Lerche H, Biervert C, Alekov AK, et al. A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol 1999;46:305-12
  • Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126:2726-37
  • Dedek K, Kunath B, Kananura C, et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 2001;98:12272-7
  • Peters HC, Hu H, Pongs O, et al. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 2005;8:51-60
  • Kinney GG, Patino P, Mermet-Bouvier Y, et al. Cognition-enhancing drugs increase stimulated hippocampal θ rhythm amplitude in the urethane-anesthetized rat. J Pharmacol Exp Ther 1999;291:99-106
  • Gray JA, Ball GG. Frequency-specific relation between hippocampal theta rhythm, behavior, and amobarbital action. Science 1970;168:1246-8
  • McNaughton N, Ruan M, Woodnorth MA. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus 2006;16:1102-10
  • Staubli U, Xu FB. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 1995;15:2445-52
  • Hu H, Vervaeke K, Storm JF. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 2002;545:783-805
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47-60
  • Lindner MD, Hogan JB, Krause RG, et al. Soluble Aβ and cognitive function in aged F-344 rats and Tg2576 mice. Behav Brain Res 2006;173:62-75
  • Geiger J, Weber YG, Landwehrmeyer B, et al. Immunohistochemical analysis of KCNQ3 potassium channels in mouse brain. Neurosci Lett 2006;400:101-4
  • Kanaumi T, Takashima S, Iwasaki H, et al. Developmental changes in KCNQ2 and KCNQ3 expression in human brain: Possible contribution to the age-dependent etiology of benign familial neonatal convulsions. Brain Dev 2007
  • Lerche C, Scherer CR, Seebohm G, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 2000;275:22395-400
  • Liang GH, Jin Z, Ulfendahl M, et al. Molecular analyses of KCNQ1-5 potassium channel mRNAs in rat and guinea pig inner ears: expression, cloning, and alternative splicing. Acta Otolaryngol 2006;126:346-52
  • Smith JS, Iannotti CA, Dargis P, et al. Differential expression of KCNQ2 splice variants: implications to M current function during neuronal development. J Neurosci 2001;21:1096-103
  • Passmore GM, Selyanko AA, Mistry M, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 2003;23:7227-36
  • Rivera-Arconada I, Lopez-Garcia JA. Effects of M-current modulators on the excitability of immature rat spinal sensory and motor neurones. Eur J Neurosci 2005;22:3091-8
  • Rivera-Arconada I, Martinez-Gomez J, Lopez-Garcia JA. M-current modulators alter rat spinal nociceptive transmission: an electrophysiological study in vitro. Neuropharmacology 2004;46:598-606
  • Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006;69:273-94
  • Waxman SG. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 1999;(Suppl 6):S133-40
  • Chung HJ, Jan YN, Jan LY. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci USA 2006;103:8870-5
  • Vervaeke K, Gu N, Agdestein C, et al. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol 2006;576:235-56
  • Yue C, Yaari Y. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol 2006;95:3480-95
  • Devaux JJ, Kleopa KA, Cooper EC, et al. KCNQ2 is a nodal K+ channel. J Neurosci 2004;24:1236-44
  • Schwarz JR, Glassmeier G, Cooper EC, et al. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol 2006;573:17-34
  • Vervaeke K, Gu N, Agdestein C, et al. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol 2006;576:235-56
  • Marrion NV. Control of M-current. Ann Rev Physiol 1997;59:483-504
  • Marrion NV, Smart TG, Marsh SJ, et al. Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype. Br J Pharmacol 1989;98:557-73
  • Shapiro MS, Gomeza J, Hamilton SE, et al. Identification of subtypes of muscarinic receptors that regulate Ca2+ and K+ channel activity in sympathetic neurons. Life Sci 2001;68:2481-7
  • Shapiro MS, Roche JP, Kaftan EJ, et al. Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current. J Neurosci 2000;20:1710-21
  • Selyanko AA, Stansfeld CE, Brown DA. Closure of potassium M-channels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger. Proc Biol Sci 1992;250:119-25
  • Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001;2001:RE19. Published online 4 December 2001, DOI: 10.1126/stke.2001.111.re19
  • Higashida H, Brown DA. Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell. Nature 1986;323:333-5
  • Post-Munson DJ, Dworetzky SI, Thompson MW, et al. A synthetic PIP2 short chain analog modulates cloned hKCNQ2/3 channels. Soc Neurosci Abstr 2003;29
  • Li Y, Gamper N, Hilgemann DW, et al. Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 2005;25:9825-35
  • Suh BC, Inoue T, Meyer T, et al. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 2006;314:1454-7
  • Suh BC, Hille B. Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol 2007;582:911-6
  • Robbins J, Marsh SJ, Brown DA. Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 2006;26:7950-61
  • Marrion NV. Calcineurin regulates M channel modal gating in sympathetic neurons. Neuron 1996;16:163-73
  • Selyanko AA, Brown DA. Regulation of M-type potassium channels in mammalian sympathetic neurons: action of intracellular calcium on single channel currents. Neuropharmacology 1996;35:933-47
  • Tokimasa T. Intracellular Ca2+-ions inactivate K+-current in bullfrog sympathetic neurons. Brain Res 1985;337:386-91
  • Gamper N, Li Y, Shapiro MS. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 2005;16:3538-51
  • Shahidullah M, Santarelli LC, Wen H, et al. Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci USA 2005;102:16454-9
  • Yus-Najera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 2002;277:28545-53
  • Wen H, Levitan IB. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci 2002;22:7991-8001
  • Cruzblanca H, Koh DS, Hille B. Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc Natl Acad Sci USA 1998;95:7151-6
  • Gamper N, Shapiro MS. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol 2003;122:17-31
  • Villarroel A. M-current suppression in PC12 cells by bradykinin is mediated by a pertussis toxin-insensitive G-protein and modulated by intracellular calcium. Brain Res 1996;740:227-33
  • Zaika O, Tolstykh GP, Jaffe DB, et al. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci 2007;27:8914-26
  • Gamper N, Stockand JD, Shapiro MS. Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase. J Neurosci 2003;23:84-95
  • Li Y, Langlais P, Gamper N, et al. Dual phosphorylations underlie modulation of unitary KCNQ K(+) channels by Src tyrosine kinase. J Biol Chem 2004;279:45399-407
  • Surti TS, Huang L, Jan YN, et al. Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels. Proc Natl Acad Sci USA 2005;102:17828-33
  • Cooper EC, Jan LY. M-channels: neurological diseases, neuromodulation, and drug development. Arch Neurol 2003;60:496-500
  • Munro G, by-Brown W. Kv7 (KCNQ) channel modulators and neuropathic pain. J Med Chem 2007;50:2576-82
  • Hansen HH, Waroux O, Seutin V, et al. Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 2008
  • Korsgaard MP, Hartz BP, Brown WD, et al. Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 2005;314:282-92
  • Hansen HH, Andreasen JT, Weikop P, et al. The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol 2007;570:77-88
  • Richter A, Sander SE, Rundfeldt C. Antidystonic effects of Kv7 (KCNQ) channel openers in the dt sz mutant, an animal model of primary paroxysmal dystonia. Br J Pharmacol 2006;149:747-53
  • Wall PD. Neuropathic pain and injured nerve: central mechanisms. Br Med Bull 1991;47:631-43
  • Welch KM, Barkley GL, Tepley N, et al. Central neurogenic mechanisms of migraine. Neurology 1993;43:S21-5
  • Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 2003;460:109-16
  • Dost R, Rostock A, Rundfeldt C. The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation. Naunyn Schmiedebergs Arch Pharmacol 2004;369:382-90
  • Dzhura EV, He W, Currie KP. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2006;316:1165-74
  • Xiong Q, Sun H, Li M. Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nat Chem Biol 2007;3:287-96
  • Peretz A, Degani N, Nachman R, et al. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 2005;67:1053-66
  • Wickenden AD, Krajewski JL, London B, et al. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol Pharmacol 2008;73:977-86
  • Bentzen BH, Schmitt N, Calloe K, et al. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology 2006;51:1068-77
  • Wuttke TV, Seebohm G, Bail S, et al. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 2005;67:1009-17
  • Lundby A, Ravn LS, Svendsen JH, et al. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm 2007;4:1532-41
  • Peroz D, Rodriguez N, Choveau F, et al. Kv7.1 (KCNQ1) properties and channelopathies. J Physiol 2008
  • Available from: www.Icagen.com
  • Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2007;7:1597-612
  • Wood JN, Boorman J. Voltage-gated sodium channel blockers; target validation and therapeutic potential. Curr Top Med Chem 2005;5:529-37
  • Snutch TP. Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx 2005;2:662-70
  • Gribkoff VK. The role of voltage-gated calcium channels in pain and nociception. Semin Cell Dev Biol 2006;17:555-64
  • Winquist RJ, Pan JQ, Gribkoff VK. Use-dependent blockade of Cav2.2 voltage-gated calcium channels for neuropathic pain. Biochem Pharmacol 2005;70:489-99
  • Moore N. Diclofenac potassium 12.5mg tablets for mild to moderate pain and fever: a review of its pharmacology, clinical efficacy and safety. Clin Drug Investig 2007;27:163-95
  • Altier C, Dale CS, Kisilevsky AE, et al. Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 2007;27:6363-73
  • Bell TJ, Thaler C, Castiglioni AJ, et al. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004;41:127-38
  • Gribkoff VK, Starrett JE Jr, Dworetzky SI. Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 2001;7:166-177
  • Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 1992;256:532-5
  • Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799-822
  • Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 2001;281:C1769-75
  • Amberg GC, Bonev AD, Rossow CF, et al. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 2003;112:717-24
  • Brenner R, Perez GJ, Bonev AD, et al. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 2000;407:870-6
  • Nelson MT, Bonev AD. The β1 subunit of the Ca2+-sensitive K+ channel protects against hypertension. J Clin Invest 2004;113:955-7
  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 2004;11:3029-40
  • Lynch SS, Cheng CM, Yee JL. Intrathecal ziconotide for refractory chronic pain. Ann Pharmacother 2006;40:1293-300
  • Bowersox SS, Singh T, Nadasdi L, et al. Cardiovascular effects of omega-conopeptides in conscious rats: mechanisms of action. J Cardiovasc Pharmacol 1992;20:756-64
  • Wallace MS. Ziconotide: a new nonopioid intrathecal analgesic for the treatment of chronic pain. Expert Rev Neurother 2006;6:1423-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.