827
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Neurobiological aspects of Alzheimer's disease

, &
Pages 535-555 | Published online: 11 Feb 2011

Bibliography

  • Campbell VA, Gowran A. Alzheimer's disease; taking the edge off with cannabinoids? Br J Pharmacol 2007;152:655-61
  • Imbimbo BP, Lombard J, Pomara N. Pathophysiology of Alzheimer's disease. Neuroimaging Clin N Am 2005;15:727-53
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007;8:499-509
  • Yates D, McLoughlin DM. The molecular pathology of Alzheimer's disease. Psychiatry 2008;7:1-5
  • Yin YY, Liu H, Cong XB, Acetyl-L-Carnitine attenuates okadaic acid induced Tau hyperphosphorylation and spatial memory impairment in rats. J Alzheimer Dis 2010;19(2):735-46
  • Darvesh AS, Carroll RT, Bishayee A, Oxidative stress and Alzheimers disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother 2010;10:729-45
  • Vasto S, Candore G, List F, Inflammation, genes and zinc in Alzheimer's disease. Brain Res Rev 2008;58:96-105
  • Buttini M, Masliah E, Barbour R, beta-Amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer's disease. J Neurosci 2005;25(40):9096-10007
  • Cacabelos R. Donepezil in Alzheimer's disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 2007;3:303-10
  • Zhu X, Lee H, Perry G, Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 2007;1772:494-502
  • Zhu X, Raina AK, Perry G, Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 2004;3:219-26
  • Hua X, Lei M, Ding J, Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with D-galactose: a potential contribution to Alzheimer's disease processes. Exp Neurol 2008;210:709-18
  • Volpicelli-Daley LA, Duysen EG, Lockridge O, Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Ann Neurol 2003;53:788-96
  • Darreh-Shori T, Almkvist O, Guan ZZ, Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 2002;59:563-71
  • Gron G, Brandenburg I, Wunderlich AP, Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging 2006;27:78-87
  • Virchow R. Zur cellulose–frage. Virchows Arch 1854;6:416-26
  • Glenner GG, Terry WD. Characterization of amyloid. Annu Rev Med 1974;25:131-5
  • Kayed R, Sokolov Y, Edmonds B, Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004;279:46363-74
  • Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? TRENDS Neurosci 2001;24:219-24
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 1991;12:383-8
  • Buee L, Bussiere T, Buee-Scherrer V, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 2000;33:95-130
  • Geschwind DH. Tau Phosphorylation, tangles, and neurodegeneration: the chicken or the egg? Neuron 2003;40:457-60
  • Green MS, Kaye JA, Ball MJ. The Oregon brain aging study: neuropathology accompanying healthy aging in the oldest old. Neurology 2000;54:105-13
  • Tsai LH, Lee MS, Cruz J. Cdk5, a therapeutic target for Alzheimer's disease? Biochim Biophys Acta 2004;1697:137-42
  • Jackson GR, Wiedau-Pazos M, Sang TK, Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002;34:509-19
  • Cruz JC, Tseng HC, Goldman JA, Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 2003;40:471-83
  • Noble W, Olm V, Takata K, Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 2003;38:555-65
  • Liou YC, Sun A, Ryo A, Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003;424:556-61
  • Town T, Zolton J, Shaffner R, p35/Cdk5 pathway mediates soluble amyloid-beta peptide induced tau phosphorylation in vitro. J Neurosci Res 2002;69:362-72
  • Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Biol 2001;2:749-59
  • Allen B, Ingram E, Takao M, Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002;22:9340-51
  • Andorfer C, Acker CM, Kress Y, Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005;25:5446-54
  • Kins S, Crameri A, Evans DRH, Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 2001;276:38193-206
  • Durakova Z. Some current insights into oxidative stress. Physiol Res 2010;59:459-69
  • Guglielmotto M, Giliberto L, Tamagno E, Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front Aging Neurosci 2010;2:3
  • Gu F, Zhu M, Shi J, Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett 2008;440:44-8
  • Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 2008;33:450-8
  • Perrin R, Briancon S, Jeandel C, Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer's disease: a case-control study. Gerontology 1990;36:306-13
  • Pratico D, Uryu K, Leight S, Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001;21:4183-92
  • Pappolla MA, Chyan YJ, Omar RA, Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998;152:871-83
  • McCord JM. The evolution of free radicals and oxidative stress. Am J Med 2000;108:652-9
  • Onozato ML, Tojo A, Goto A, Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 2002;61:186-94
  • Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001;40:959-75
  • Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002;18:872-9
  • Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165-70
  • Rezai-Zadeh K, Shytle D, Sun N, Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005;25:8807-18
  • Obregon DF, Rezai-Zadeh K, Bai Y, ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 2006;281:16419-28
  • Rezai Zadeh K, Douglas Shytle R, Bai Y, Flavonoid mediated presenilin 1 phosphorylation reduces Alzheimer's disease amyloid production. J Cell Mol Med 2009;13:574-88
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8:57-69
  • Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 2001;20(Suppl 5):464-77
  • Allan Butterfield D, Castegna A, Lauderback CM. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging 2002;23:655-64
  • Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 2004;32:S22-7
  • Benard G, Bellance N, James D, Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007;120:838-49
  • Petit PX, Goubern M, Diolez P, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 1998;426:111-16
  • Liu X, Kim CN, Yang J, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147-57
  • Jordan J, Cena V, Prehn JHM. Mitochondrial control of neuron death and its role in neurodegenerative disorders. J Physiol Biochem 2003;59:129-41
  • Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007;292:C641-9
  • Rusakov DA. Ca2+-dependent mechanisms of presynaptic control at central synapses. Neuroscientist 2006;12:317-28
  • Hollenbeck PJ. Mitochondria and neurotransmission: evacuating the synapse. Neuron 2005;47:331-3
  • Hauptmann S, Scherping I, Drose S, Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009;30:1574-86
  • Keller JN, Kindy MS, Holtsberg FW, Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998;18:687-98
  • Zhu X, Su B, Wang X, Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 2007;64:2202-10
  • Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol 2002;2:120-3
  • Keller JN, Mark RJ, Bruce AJ, 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 1997;80:685-96
  • Galindo MF, Ikuta I, Zhu X, Mitochondrial biology in Alzheimer's disease pathogenesis. J Neurochem 2010;114:933-45
  • Maczurek A, Hager K, Kenklies M, Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Adv Drug Deliv Rev 2008;60:1463-70
  • Moreira PI, Harris PLR, Zhu X, Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimer Dis 2007;12:195-206
  • Quinn JF, Bussiere JR, Hammond RS, Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging 2007;28:213-25
  • Akiyama H, Barger S, Barnum S, Inflammation and Alzheimer's disease. Neurobiol Aging 2000;21:383-421
  • Abbas N, Bednar I, Mix E, Up-regulation of the inflammatory cytokines IFN-gamma and IL-12 and down-regulation of IL-4 in cerebral cortex regions of APPSWE transgenic mice. J Neuroimmunol 2002;126:50-7
  • Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 2003;27:325-55
  • Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol 2006;65:199-211
  • Fetler L, Amigorena S. Neuroscience: brain under surveillance: the microglia patrol. Science 2005;309:392-402
  • Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003;304:1-11
  • Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol 2006;147:S232-45
  • Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008;12:762-80
  • De Giorgio LA, Shimizu Y, Chun HS, APP knockout attenuates microglial activation and enhances neuron survival in substantia nigra compacta after axotomy. Glia 2002;38:174-8
  • Tan J, Town T, Crawford F, Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nat Neurosci 2002;5:1288-93
  • Tan J, Town T, Mori T, CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 2000;20:7587-95
  • Schenk D, Barbour R, Dunn W, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-7
  • Bard F, Cannon C, Barbour R, Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000;6:916-9
  • Town T, Laouar Y, Pittenger C, Blocking TGF-beta–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008;14:681-7
  • Combs CK, Karlo JC, Kao SC. beta-Amyloid stimulation of microglia and monocytes results in TNF alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001;21:1179-85
  • Koistinaho M, Lin S, Wu X, Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 2004;10:719-26
  • Nagele RG, D'Andrea MR, Lee H, Astrocytes accumulate Abeta42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 2003;971:197-209
  • Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol 2007;184:69-91
  • Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun 2005;19:493-9
  • Simard AR, Soulet D, Gowing G, Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006;49:489-502
  • Heneka MT, Feinstein DL. Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 2001;114:8-18
  • Torreilles F, Salman-Tabcheh S, Guerin MC, Neurodegenerative disorders: the role of peroxynitrite. Brain Res Rev 1999;30:153-63
  • Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 2004;82:156-62
  • Lesort M, Johnson GVW. Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 2000;99:305-16
  • Schubert M, Brazil DP, Burks DJ, Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003;23:7084-90
  • Mori T, Paris D, Town T, Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APPsw mice. J Neuropathol Exp Neurol 2001;60:778-84
  • Sparks DL, Sabbagh MN, Connor DJ, Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 2005;62:753-60
  • Mahley RW, Nathan BP, Pitas RE. Apolipoprotein E. structure, function, and possible roles in Alzheimer's disease. Ann NY Acad Sci 1996;777:139-45
  • Hartmann T. Role of Amyloid precursor protein, amyloid-and-secretase in cholesterol maintenance. Cell Mech Alzheimer Dis 2006;3:305-10
  • Wellington CL. Cholesterol at the crossroads: Alzheimer's disease and lipid metabolism. Clin Genet 2004;66:1-16
  • Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer's disease. Annu Rev Med 2006;57:513-33
  • Schmitt B, Bernhardt T, Moeller HJ, Combination therapy in Alzheimers disease: a review of current evidence. CNS Drugs 2004;18:827-44
  • Ulrich J, Stahelin HB. The variable topography of Alzheimer type changes in senile dementia and normal old age. Gerontology 1984;30:210-4
  • Klingner M, Apelt J, Kumar A, Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with beta-amyloid plaque pathology. Int J Dev Neurosci 2003;21:357-69
  • Grothe M, Zaborszky L, Atienza M, Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease. Cerebral Cortex 2010;20:1685-95
  • Fischer W, Gage FH, Bjorklund A. Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur J Neurosci 2006;1:34-45
  • Markowska AL, Stone WS, Ingram DK, Individual differences in aging: behavioral and neurobiological correlates. Neurobiol Aging 1989;10:31-43
  • Borson S, Barnes RF, Veith RC, Impaired sympathetic nervous system response to cognitive effort in early Alzheimer's disease. J Gerontology 1989;44:M8-12
  • Olton DS. Interventional approaches to memory. In: Martinez JR, Kesner RP, editors, Lesions in learning and memory: a biological view. Academic Press, Orlando, FL; 1986. p. 379-97
  • Handelmann GE, Olton DS. Recovery of function after neurotoxic damage to the hippocampal CA3 region: importance of postoperative recovery interval and task experience. Behav Neural Biol 1981;33:453-64
  • Coyle JT. Neurotoxic action of kainic acid. J Neurochem 1983;41:1-11
  • Beninger RJ, Jhamandas K, Boegman RJ, Effects of scopolamine and unilateral lesions of the basal forebrain on T-maze spatial discrimination and alternation in rats. Pharmacol Biochem Behav 1986;24:1353-60
  • Troncoso JC, Price DL, Griffin JW, Neurofibrillary axonal pathology in aluminum intoxication. Ann Neurol 2004;12:278-83
  • Wenk GL. An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology 1989;99:431-8
  • Sharma M, Gupta YK. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 2002;71:2489-98
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Academic Press, Orlando, FL; 2007
  • Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 1988;256:283-90
  • Issa AM, Gauthier S, Collier B. Effects of calyculin A and okadaic acid on acetylcholine release and subcellular distribution in rat hippocampal formation. J Neurochem 2002;72:166-73
  • Gong CX, Wang JZ, Iqbal K, Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neurosci Lett 2003;340:107-10
  • Bernstein HG, Schwartzberg H, Poeggel G, Intracerebroventricular but not intraperitonial administration of aluminium attenuates vasopressin-enhanced retrieval of a passive avoidance task in rats. Pharmacol Biochem Behav 1994;47:587-90
  • Kumar MVK, Gupta YK. Intracerebroventricular administration of colchicine produces cognitive impairment associated with oxidative stress in rats. Pharmacol Biochem Behav 2002;73:565-71
  • Kumar A, Seghal N, Naidu PS, Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacol Rep 2007;59:274-82
  • Elder GA, Sosa MAG, De Gasperi R. Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med 2010;77:69-81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.