4,875
Views
624
CrossRef citations to date
0
Altmetric
Reviews

Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy

, &
Pages 103-119 | Published online: 12 Jan 2012

Bibliography

  • McCubrey JA, Steelman LS, Chappell WH, Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007;1773:1263-84
  • Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature 1964;204:1104-5
  • Kirsten WH, Schauf V, McCoy J. Properties of a murine sarcoma virus. Bibl Haematol 1970(1):246-9
  • Cooper GM. Cellular transforming genes. Science 1982;217:801-6
  • Santos E, Tronick SR, Aaronson SA, T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 1982;298:343-7
  • Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982;297:474-8
  • Catalogue Of Somatic Mutations in Cancer, Hinxton, Cambridge, UK: Wellcome Trust Sanger Institute, 2011. Available from: http://www.sanger.ac.uk/genetics/CGP/cosmic [Last accessed 8 December 2011]
  • Shields JM, Pruitt K, McFall A, Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol 2000;10:147-54
  • McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26:3113-21
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003;3:11-22
  • Beeram M, Patnaik A, Rowinsky EK. Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 2005;23:6771-90
  • Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 2006;33:392-406
  • Pratilas CA, Solit DB. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 2010;16:3329-34
  • Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science 2001;294:1299-304
  • Diez D, Sanchez-Jimenez F, Ranea JA. Evolutionary expansion of the Ras switch regulatory module in eukaryotes. Nucleic Acids Res 2011;39:5526-37
  • Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010;10:842-57
  • Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal 2003;15:463-9
  • Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004;5:875-85
  • Crews CM, Alessandrini A, Erikson RL. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 1992;258:478-80
  • Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007;26:3227-39
  • Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009;8:1168-75
  • Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun 2010;399:313-17
  • Smeal T, Binetruy B, Mercola DA, Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 1991;354:494-6
  • Binetruy B, Smeal T, Karin M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 1991;351:122-7
  • Pulverer BJ, Kyriakis JM, Avruch J, Phosphorylation of c-jun mediated by MAP kinases. Nature 1991;353:670-4
  • Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009;28(Suppl 1):S24-31
  • Vasko V, Ferrand M, Di Cristofaro J, Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:2745-52
  • Santarpia L, Myers JN, Sherman SI, Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010;116:2974-83
  • Volante M, Rapa I, Gandhi M, RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 2009;94:4735-41
  • Rapa I, Saggiorato E, Giachino D, Mammalian target of rapamycin pathway activation is associated to RET mutation status in medullary thyroid carcinoma. J Clin Endocrinol Metab 2011;96:2146-53
  • Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001;81:153-208
  • Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 2003;1603:47-82
  • Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 2011;30:3477-88
  • Davies H, Bignell GR, Cox C, Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54
  • Poulikakos PI, Rosen N. Mutant BRAF melanomas – dependence and resistance. Cancer Cell 2011;19:11-15
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-62
  • Garnett MJ, Rana S, Paterson H, Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005;20:963-9
  • Wan PT, Garnett MJ, Roe SM, Cancer genome project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855-67
  • Michaloglou C, Vredeveld LC, Soengas MS, BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005;436:720-4
  • Campisi J. Suppressing cancer: the importance of being senescent. Science 2005;309:886-7
  • Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005;37:961-76
  • Pearson G, Robinson F, Beers Gibson T, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83
  • Inamdar GS, Madhunapantula SV, Robertson GP. Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 2010;80:624-37
  • Cheung M, Sharma A, Madhunapantula SV, Robertson GP. Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res 2008;68:3429-39
  • Santarpia L, El-Naggar AK, Cote GJ, Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab 2008;93:278-84
  • Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer 2009;16:17-44
  • Schindler G, Capper D, Meyer J, Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121:397-405
  • Alessi DR, Cuenda A, Cohen P, PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995;270:27489-94
  • Favata MF, Horiuchi KY, Manos EJ, Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998;273:18623-32
  • Lorusso PM, Adjei AA, Varterasian M, Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 2005;23:5281-93
  • Sebolt-Leopold JS, Dudley DT, Herrera R, Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999;5:810-16
  • Rinehart J, Adjei AA, Lorusso PM, Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 2004;22:4456-62
  • Solit DB, Garraway LA, Pratilas CA, BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006;439:358-62
  • LoRusso PM, Krishnamurthi SS, Rinehart JJ, Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 2010;16:1924-37
  • Yeh TC, Marsh V, Bernat BA, Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 2007;13:1576-83
  • Davies BR, Logie A, McKay JS, AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007;6:2209-19
  • Huynh H, Soo KC, Chow PK, Tran E. Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther 2007;6:138-46
  • Haass NK, Sproesser K, Nguyen TK, The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 2008;14:230-9
  • Adjei AA, Cohen RB, Franklin W, Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 2008;26:2139-46
  • Drummer R, Robert C, Chapman P, AZD6244 (ARRY-142886) vs temozolomide in patients with advanced melanoma: an open-label, randomized, multicenter, phase II study [abstract). J Clin Oncol 2008;26:9033
  • Tzekova V, Cebotaru C, Ciuleanu TE, Efficacy and safety of AZD6244 (ARRY-142886) as second/third-line treatment of patients (pts) with advanced non-small cell lung cancer (NSCLC) [abstract). J Clin Oncol 2008;26:8029
  • Lang I, Adenis A, Boer K, AZD6244 (ARRY-142886) versus capecitabine in patients with metastatic colorectal cancer who have failed prior chemotherapy [abstract). J Clin Oncol 2008;26:4114
  • Bekaii-Saab T, Phelps MA, Li X, Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol 2011;29:2357-63
  • O'Neil BH, Goff LW, Kauh JS, Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2011;29:2350-6
  • Johnston S. XL518, a potent, selective orally bioavailable MEK1 inhibitor, down-regulates the Ras/Raf/MEK/ERK pathway in vivo, resulting in tumor growth inhibition and regression in preclinical models [abstract C209]. 19th AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2007
  • Rosen LS, Galatin P, Fehling JM, A phase I dose-escalation study of XL518, a potent MEK inhibitor administered orally daily to subjects with solid tumors [abstract). J Clin Oncol 2008;26:14585
  • Shapiro G, LoRusso P, Kwak EL, Clinical combination of the MEK inhibitor GDC-0973 and the PI3K inhibitor GDC-0941: a first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors. ASCO J Clin Oncol 2011;29(Suppl):abstract 3005
  • Gilmartin AG, Bleam MR, Groy A, GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 2011;17:989-1000
  • Yamaguchi T, Kakefuda R, Tajima N, Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol 2011;39:23-31
  • Thompson D, Flaherty K, Messersmith W, A three-part, phase I, dose-escalation study of GSK1120212, a potent MEK inhibitor, administred orally with solid tumors or lymphoma [abstract]. J Clin Oncol 2009;27:e14584
  • Iverson C, Larson G, Lai C, RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res 2009;69:6839-47
  • Daouti S, Higgins B, Kolinsky K, Preclinical in vivo evaluation of efficacy, pharmacokinetics, and pharmacodynamics of a novel MEK1/2 kinase inhibitor RO5068760 in multiple tumor models. Mol Cancer Ther 2010;9:134-44
  • Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 2005;4:677-85
  • Gokhale PC, Zhang C, Newsome JT, Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res 2002;8:3611-21
  • Dritschilo A, Huang CH, Rudin CM, Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 2006;12:1251-9
  • Rudin CM, Marshall JL, Huang CH, Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 2004;10:7244-51
  • Wilhelm SM, Carter C, Tang L, BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004;64:7099-109
  • Eisen T, Ahmad T, Flaherty KT, Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer 2006;95:581-6
  • Hauschild A, Agarwala SS, Trefzer U, Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 2009;27:2823-30
  • Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 2009;69:223-40
  • Sherman SI. Targeted therapies for thyroid tumors. Mod Pathol 2011;24(Suppl 2):S44-52
  • Moreno-Aspitia A. Clinical overview of sorafenib in breast cancer. Future Oncol 2010;6:655-63
  • Joseph EW, Pratilas CA, Poulikakos PI, The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 2010;107:14903-8
  • Flaherty KT, Puzanov I, Kim KB, Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010;363:809-19
  • Chapman PB, Hauschild A, Robert C, The BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507-16
  • Heidorn SJ, Milagre C, Whittaker S, Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010;140:209-21
  • Hatzivassiliou G, Song K, Yen I, RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010;464:431-5
  • Kopetz S, Desai J, Chan E, PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol 2010;28(15 Suppl):abstract 3534
  • Poulikakos PI, Zhang C, Bollag G, RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010;464:427-30
  • Robert C, Soria JC, Spatz A, Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol 2005;6:491-500
  • Robert C, Arnault JP, Mateus C. RAF inhibition and induction of cutaneous squamous cell carcinoma. Curr Opin Oncol 2011;23:177-82
  • Bollag G, Hirth P, Tsai J, Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010;467:596-9
  • Kefford R, Arkenau H, Brown MO, Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 2010;28(15 Suppl):abstract 8503
  • Arkenau HT, Kefford R, Long GV. Targeting BRAF for patients with melanoma. Br J Cancer 2011;104:392-8
  • Puzanov I, Burnett P, Flaherty KT. Biological challenges of BRAF inhibitor therapy. Mol Oncol 2011;5:116-23
  • Schwartz GK, Robertson S, Shen A, A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors. J Clin Oncol 2009;27:3513
  • Mordant P, Loriot Y, Leteur C, Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination. Mol Cancer Ther 2010;9:358-68
  • Montagut C, Sharma SV, Shioda T, Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008;68:4853-61
  • King AJ, Patrick DR, Batorsky RS, Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 2006;66:11100-5
  • Hoeflich KP, Herter S, Tien J, Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res 2009;69:3042-51
  • Villanueva J, Vultur A, Lee JT, Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010;18:683-95
  • Tiacci E, Trifonov V, Schiavoni G, BRAF mutations in hairy-cell leukemia. N Engl J Med 2011;24:2305-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.