212
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: a role for the peptide analogue of thymulin (PAT)

, &
Pages 1065-1073 | Published online: 04 Aug 2012

Bibliography

  • Glass CK, Saijo K, Winner B, Mechanisms underlying inflammation in neurodegeneration. Cell 2010;140:918-34
  • Nathan C, Ding A. Nonresolving inflammation. Cell 2010;140:871-82
  • Gao H-M, Hong J-S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 2008;29:357-65
  • Carson MJ, Doose JM, Melchior B, CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65
  • Saunders NR, Ek CJ, Habgood MD, Barriers in the brain: a renaissance? Trends Neurosci 2008;31:279-86
  • Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007;28:12-18
  • Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009;9:429-39
  • Frank-Cannon T, Alto L, McAlpine F, Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009;4:47
  • Bjorkqvist M, Wild EJ, Tabriz SJ. Harnessing immune alterations in neurodegenerative diseases. Neuron 2009;64:21-4
  • Amor S, Puentes F, Baker D, Inflammation in neurodegenerative diseases. Immunol 2010;154-69
  • Newman TA, Woolley ST, Hughes PM, T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 2001;124:2203-14
  • Giuliani F, Goodyer CG, Antel JP, Vulnerability of human neurons to T cell mediated cytotoxicity. J. Immunol 2003;171:368-79
  • Zipp F, Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 2006;29:518-27
  • Wolf SA, Steiner B, Akpinarli A, CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 2009;182:3979-84
  • Ron-Harel N, Cardon M, Schwartz M. Brain homeostasis is maintained by ‘‘danger'' signals stimulating a supportive immune response within brain's borders. Brain Behav Immun 2010;25:1036-43
  • Popovich PC, Longbrake EE. Can the immune subsystem be harnessed to repair the CNS. Nature Rev Neurosci 2008;9:481-93
  • Beers DR, Henkel JS, Zhao W, CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 2008;105:15558-63
  • Elkabes S, DiCicco-loom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996;16:2508-21
  • Ziemssen T, Kumpfel T, Klinkert WEF, Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain 2002;125:2381-91
  • Pul R, Dodel R, Stangel M. Antibody-based therapy in Alzheimer's disease. Expert Opin Biol Ther 2011;11:343-57
  • Arroyo DS, Soria JA, Gaviglio EA, Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol 2011;1:1415-21
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84
  • O'Neill LA. How Toll-like receptors signal: what we know and what we don't know. Curr Opin Immunol 2006;18:3-9
  • Konat GW, Kielian T, Marriott I. The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 2006;99:1-12
  • Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004;173:3916-24
  • Butchi NB, Woods T, Du M, TLR7 and TLR9 trigger distinct neuroinflammatory responses in the CNS. Am J Pathol 2011;179:783-94
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-18
  • Streit WL. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133-9
  • Simard AR, Soulet D, Gowing G, Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006;49:489-502
  • Kim YS, Joh TH. Microglia, major player in the brain inflammation: their role in the pathogenesis of Parkinson's disease. Exp Mol Med 2006;38:333-47
  • Block ML, Hong JS. Microglia and inflammation mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76:77-98
  • Brenneman DE, Gozes I. A femtomolar-acting neuroprotective peptide. J Clin Invest 1996;97:2299-307
  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:190-1913
  • Correa F, Hernangomez M, Mestre L, Anandamide enhances IL-10 production in activated microglia by targeting CB (2) receptors; roles of ERK1/2, JNK and NF-kappaB. Glia 2010;58:135-47
  • Boche D, Cunningham C, Docagne F, TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006;22:638-50
  • Bernardo A, Levi G, Minghetti L. Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14 – prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 2000;12:2215-23
  • Cardona AE, Pioro EP, Sasse ME, Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006;9:917-24
  • Streit WJ, Davis CN, Harrison JK. Role of fractalkine (CX3CL1) in regulating neuron-microglia interactions: development of viral-based CX3CR1 antagonists. Curr Alzheimer Res 2005;2:187-9
  • Szelenyi J. Cytokines and the central nervous system. Brain Res Bull 2001;54:329-38
  • Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev 1996;17:64-102
  • Blalock JE. Harnessing a neural-immune circuit to control inflammation and shock. J Exp Med 2002;18:195-F25-8
  • Reyes TM, Coe CL. The proinflammatory cytokine network: interactions in the CNS and blood of rhesus monkeys. Am J Physiol 1998;274:R139-44
  • Konsman JP, Veeneman J, Combe C, Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur J Neurosci 2008;28:2499-510
  • Banks WA, Ortiz L, Plotkin SR, Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 1991;259:988-96
  • Hansen MK, Taishi P, Chen Z, Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1beta. J. Neurosci 1998;18:2247-53
  • Safieh-Garabedian B, Haddad JJ, Saade NE. Cytokines in the Central Nervous System: targets for Therapeutic Intervention. Curr Drug Targets CNS Neurol Disord 2004;3:61-72
  • Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005;5:629-40
  • Luheshi NM, Rothwell NJ, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol 2009;157:1318-29
  • Peng H, Sola A, Moore J, Caspase inhibition by cardiotrophin-1 prevents neuronal death in vivo and in vitro. J Neurosci Res 2010;88:1041-51
  • Zhang R, Yamada J, Hayashi Y, Inhibition of NMDA-induced outward currents by interleukin-1beta in hippocampal neurons. Biochem Biophys Res Commun 2008;372:816-20
  • Ferrari CC, Depino AM, Prada F, Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1expression in the brain. Am J Pathol 2004;165:1827-37
  • Vaz AR, Silva SL, Barateiro A, Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp Neurol 2011;229:381-90
  • Sabat R, Grutz G, Warszawska K, Biology of interleukin-10. Cytokine Growth Factor Rev 2010;21:331-44
  • Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002;3:216-27
  • Xin J, Wainwright DA, Mesnard NA, IL-10 within the CNS is necessary for CD4+ T cells to mediate neuroprotection. Brain Beh Immunit 2011;25:820-9
  • Zhou Z, Peng X, Insolera R, Interleukin-10 provides direct trophic support to neurons. J Neurochem 2009;110:1617-27
  • Jo D, Liu D, Yao S, Intracellular protein therapy with SOCS-3 inhibits inflammation and apoptosis. Nat Med 2005;11:892-8
  • Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Int Med 2009;265:663-79
  • Borovikova LV, Ivanova S, Zhang M, Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458-62
  • Bernik TR, Friedman SG, Ochani M, Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002;195:781-8
  • Wang H, Yu M, Ochani M, Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384-8
  • Gill JK, Savolainen M, Young GT, Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA 2011a;108:5867-72
  • Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 2005;346:967-89
  • Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2007;74:1155-63
  • Gill JK, Savolainen M, Young GT, Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA 2011b;108:5867-72
  • Waldburger JM, Boyle Dl, Pavlov VA, Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum 2008;58:3439-49
  • Rosa-Ballina M, Olofsson PS, Ochani M, Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011;334:98-101
  • Loram LC, Harrison JA, Chao L, Intrathecal injection of an alpha seven nicotinic acetylcholine receptor agonist attenuates gp120-induced mechanical allodynia and spinal pro-inflammatory cytokine profiles in rats. Brain Behav Immun 2010;24:959-67
  • Gao BX, Hierl M, Clarkin K, Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain. Pain 2010;149:33-49
  • Rowbotham MC, Duan WR, Thomas J, A randomized double-blind, placebo controlled trial evaluating the efficacy and safety of ABT-594 in patients with diabetic peripheral neuropathic pain. Pain 2009;146:245-52
  • Conejero-Goldberg C, Davies P. Ulloa l. alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev 2008;32:693-706
  • D'Andrea MR, Nagelke RG, Wang HY, Evidence that neurons accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001;38:120-34
  • Nordberg A. Nicotinic receptor abnormalities of Alzheimer's disease: therapeutic implications. Biol Psychiatry 2001;49:200-10
  • Suzuki T, Hide I, Matsubara A, Microglail alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 2006;83:1461-70
  • DeRosa MJ, Esandi MC, Garelli A, Relationship between alpha 7nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005;160:154-61
  • Menghetti L, Ajmone-Cat MA, De Berardinis MA, Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 2005;48:251-6
  • de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007;151:915-29
  • Bach JF, Dardenne M, Pleau JM, Biochemical characterization of a serum thymic hormone. Nature 1977;266:55-6
  • Bach JF. Thymulin (FTS-Zn). Clin Immunol Allergy 1983;3:133-56
  • Safieh-Garabedian B, Dardenne M, Kanaan SA, The role of cytokines and prostaglandin-E2 in thymulin induced hyperalgesia. Neuropharmacol 2000;39:1653-61
  • Safieh-Garabedian B, Jalakhian RH, Saade NE, Thymulin reduces hyperalgesia induced by peripheral endotoxin injection in rats and mice. Brain Res 1996;717:179-83
  • Henriques-Coelho T, Oliveira SM, Moura RS, Thymulin Inhibits Monocrotaline-Induced Pulmonary Hypertension Modulating Interleukin-6 Expression and Suppressing p38 Pathway. Endocrinology 2008;149:4367-73
  • Reggiani PC, Morel GR, Console GM, The Thymus− Neuroendocrine Axis. Ann N Y Acad Sci 2009;1153:98-106
  • Pleau JM, Dardenne M, Blanot D, Antagonistic analogue of serum thymic factor (FTS) interacting with FTS cellular receptor. Immunol Lett 1979;1:179-82
  • Safieh-Garabedian B, Dardenne M, Pleau JM, Potent analgesic and anti-inflammatory actions of a novel thymulin-related peptide in the rat. Br J Pharmacol 2002;136:947-55
  • Saade NE, Atweh SF, Jabbur SJ, A thymulin analogue peptide with powerful inhibitory effects on pain of neurogenic origin. Neurosci 2003;119:155-65
  • Safieh-Garabedian B, Ochoa-Chaar CI, Poole S, Thymulin reverses inflammatory hyperalgesia and modulates the increased concentration of proinflammatory cytokines induced by i.c.v. endotoxin injection. Neurosci 2003;121:865-73
  • Safieh-Garabedian B, Jabbur SJ, Dardenne M, Thymulin related peptide attenuates inflammation in the brain induced by intracerebroventricular endotoxin injection. Neuropharmacol 2011;60:496-504
  • Safieh-Garabedian B, El-Agnaf OM, Saade NE, Thymulin related peptide (PAT) potentiates the function of human a7-nicotinic acetylcholine receptor (a7-nAChR) expressed in Xenopus oocytes. Soc Neurosci 2010; Abstract 692.10/GGG18
  • Safieh-Garabedian B, Mardam Bey R, Barchini J, Inhibition of local inflammation and hyperalgesia by the peptide analogue to thymulin (PAT) is partially mediated by cholinergic mechanisms. IASP Meeting; Milano; 2012
  • Qin L, Wu X, Block ML, Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007;55:453-62
  • Al-Amin H, Sarkis R, Atweh S, Chronic dizocilpine or apomorphine and development of neuropathy in two animal models II: effects on brain cytokines and neurotrophins. Exp Neurol 2011;228:30-40
  • Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol 1999;57:563-81
  • Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS (Federation of European Biochemical Societies) Lett 1987;223:284-8
  • Moss DW, Bates TE. Activation of murine microglial cell lines by lipopolysaccharide and interferon-g causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 2001;13:529-38
  • Dickson DW, Lee SC, Mattiace LA, Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 1993;71:75-83
  • Lee SC, Liu W, Dickson DW, Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 b. J Immunol 1993;150:2659-67
  • Niehaus I. Lippopolysaccharides induce inflammation-mediated neurodegeneration in the substantia nigra and the cerebral cortex (A case report). AD/PD 6th International Conference; Bologna, Italy; 2003. p. 1-38
  • Nguyen MD, D'Aigle T, Gowing G, Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 2004;24:1340-9
  • Halliday G, Robinson S R, Shepherd C, Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exper Pharmacol Physiol 2000;27:1-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.