717
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells

, , , , , , & show all
Pages 1041-1054 | Published online: 09 Aug 2012

Bibliography

  • Bao Q, Zhao Y, Niess H, Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 2012; in press
  • Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod 2010;16:818-34
  • Hogan NM, Dwyer RM, Joyce MR, Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer 2012;131:1-7
  • Liu S, Ginestier C, Ou SJ, Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011;71:614-24
  • Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007;211:27-35
  • Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 2006;44:215-30
  • Koc ON, Gerson SL, Cooper BW, Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18:307-16
  • Chuah MK, Van DA, Zwinnen H, Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000;11:729-38
  • Studeny M, Marini FC, Champlin RE, Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603-8
  • Torsvik A, Bjerkvig R. Mesenchymal stem cell signaling in cancer progression. Cancer Treat Rev 2012; in press
  • Riggi N, Suva ML, De VC, EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward ewing sarcoma cancer stem cells. Genes Dev 2010;24:916-32
  • Hermann PC, Bhaskar S, Cioffi M, Cancer stem cells in solid tumors. Semin Cancer Biol 2010;20:77-84
  • Ischenko I, Seeliger H, Kleespies A, Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010;395:1-10
  • Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008;26:2806-12
  • Sarkar FH, Li Y, Wang Z, Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 2009;64:489-500
  • Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010;15:253-60
  • Wang Z, Li Y, Ahmad A, Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 2010;13:109-18
  • Wang Z, Li Y, Ahmad A, Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011;8:27-33
  • Bauerschmitz GJ, Ranki T, Kangasniemi L, Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 2008;68:5533-9
  • Folkins C, Man S, Xu P, Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2007;67:3560-4
  • Matsui W, Wang Q, Barber JP, Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008;68:190-7
  • Bao S, Wu Q, McLendon RE, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-60
  • Shafee N, Smith CR, Wei S, Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 2008;68:3243-50
  • Dylla SJ, Beviglia L, Park IK, Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008;3:e2428
  • Todaro M, Alea MP, Di Stefano AB, Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007;1:389-402
  • Charafe-Jauffret E, Ginestier C, Iovino F, Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009;69:1302-13
  • Hermann PC, Huber SL, Herrler T, Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313-23
  • Hong SP, Wen J, Bang S, CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 2009;125:2323-31
  • Wang Z, Li Y, Kong D, The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 2010;11:745-51
  • Hugo H, Ackland ML, Blick T, Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 2007;213:374-83
  • Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int 2009;76:492-9
  • Lee JM, Dedhar S, Kalluri R, The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006;172:973-81
  • Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther 2011;11:714-23
  • Graham TR, Zhau HE, Odero-Marah VA, Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008;68:2479-88
  • Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006;66:8319-26
  • Eger A, Stockinger A, Schaffhauser B, Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 2000;148:173-88
  • Jing Y, Han Z, Zhang S, Epithelial-mesenchymal transition in tumor microenvironment. Cell Biosci 2011;1:29
  • Kong D, Banerjee S, Ahmad A, Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE 2010;5:e12445
  • Wu KJ, Yang MH. Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci Rep 2011;31:449-55
  • Biddle A, Mackenzie IC. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev 2012; in press
  • Chaffer CL, Brennan JP, Slavin JL, Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 2006;66:11271-8
  • Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br J Cancer 2012;106:243-7
  • Li Y, Maitah MY, Ahmad A, Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin Ther Targets 2012;16:49-66
  • Bhat-Nakshatri P, Appaiah H, Ballas C, SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010;10:411
  • Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin Cancer Res 2011;17:6125-9
  • Michaud DS, Daugherty SE, Berndt SI, Genetic polymorphisms of interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res 2006;66:4525-30
  • Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003;21:807-39
  • Dunn GP, Bruce AT, Ikeda H, Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-8
  • Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-74
  • Chuang MJ, Sun KH, Tang SJ, Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 2008;99:905-13
  • Kuo HP, Lee DF, Xia W, TNFalpha induces HIF-1alpha expression through activation of IKKbeta. Biochem Biophys Res Commun 2009;389:640-4
  • Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine 2012;58:133-47
  • Sprowl JA, Reed K, Armstrong SR, Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res 2012;14:R2
  • Elaraj DM, Weinreich DM, Varghese S, The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 2006;12:1088-96
  • Pantschenko AG, Pushkar I, Anderson KH, The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003;23:269-84
  • Voronov E, Shouval DS, Krelin Y, IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003;100:2645-50
  • Gery I, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s). J Exp Med 1972;136:143-55
  • Dunn JH, Ellis LZ, Fujita M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett 2012;314:24-33
  • Alison MR, Nicholson LJ, Lin WR. Chronic inflammation and hepatocellular carcinoma. Recent Results Cancer Res 2011;185:135-48
  • Orelio C, Haak E, Peeters M, Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood 2008;112:4895-904
  • Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009;139:693-706
  • Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 2006;63:321-9
  • Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol 2006;195:173-83
  • Fisman EZ, Tenenbaum A. The ubiquitous interleukin-6: a time for reappraisal. Cardiovasc Diabetol 2010;9:62
  • Yi H, Cho HJ, Cho SM, Effect of 5-FU and MTX on the expression of drug-resistance related cancer stem cell markers in non-small cell lung cancer cells. Korean J Physiol Pharmacol 2012;16:11-16
  • Conze D, Weiss L, Regen PS, Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 2001;61:8851-8
  • Levina V, Marrangoni AM, DeMarco R, Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE 2008;3:e3077
  • Sansone P, Storci G, Tavolari S, IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007;117:3988-4002
  • Inda MM, Bonavia R, Mukasa A, Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010;24:1731-45
  • Nilsson CL, Dillon R, Devakumar A, Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res 2010;9:430-43
  • Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008;14:6735-41
  • Yao C, Lin Y, Chua MS, Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 2007;121:1949-57
  • Benoy IH, Salgado R, van DP, Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004;10:7157-62
  • Ginestier C, Liu S, Diebel ME, CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010;120:485-97
  • Chang CJ, Chien Y, Lu KH, Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun 2011;415:245-51
  • Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol 1997;29:867-70
  • Perkins ND. Achieving transcriptional specificity with NF-kappa B. Int J Biochem Cell Biol 1997;29:1433-48
  • Liu M, Sakamaki T, Casimiro MC, The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 2010;70:10464-73
  • Fraker CA, Ricordi C, Inverardi L, Oxygen: a master regulator of pancreatic development? Biol Cell 2009;101:431-40
  • Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell 2009;17:755-73
  • Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 2008;9:285-96
  • Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 2005;102:4783-8
  • Gustafsson MV, Zheng X, Pereira T, Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005;9:617-28
  • Chen HL, Pistollato F, Hoeppner DJ, Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 2007;25:2291-301
  • Soeda A, Park M, Lee D, Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 2009;28:3949-59
  • Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009;220:562-8
  • Zeng W, Wan R, Zheng Y, Hypoxia, stem cells and bone tumor. Cancer Lett 2011;313:129-36
  • McCord AM, Jamal M, Shankavaram UT, Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 2009;7:489-97
  • Simsek T, Kocabas F, Zheng J, The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010;7:380-90
  • Bao B, Azmi AS, Ali S, The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 2012;1826:272-296
  • Heddleston JM, Li Z, Lathia JD, Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010;102:789-95
  • Li Z, Rich JN. Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 2010;345:21-30
  • Mathieu J, Zhang Z, Zhou W, HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 2011;71:4640-52
  • Covello KL, Kehler J, Yu H, HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 2006;20:557-70
  • Gordan JD, Lal P, Dondeti VR, HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 2008;14:435-46
  • Bar EE, Lin A, Mahairaki V, Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 2010;177:1491-502
  • Li Z, Bao S, Wu Q, Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009;15:501-13
  • Pietras A, Gisselsson D, Ora I, High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 2008;214:482-8
  • Li L, Bhatia R. Stem cell quiescence. Clin Cancer Res 2011;17:4936-41
  • Wang Y, Liu Y, Malek SN, Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 2011;8:399-411
  • Heddleston JM, Li Z, McLendon RE, The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009;8:3274-84
  • Skuli N, Liu L, Runge A, Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 2009;114:469-77
  • Garzon R, Fabbri M, Cimmino A, MicroRNA expression and function in cancer. Trends Mol Med 2006;12:580-7
  • Liu J, Valencia-Sanchez MA, Hannon GJ, MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005;7:719-23
  • DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 2009;11:682-92
  • Perera RJ, Ray A. MicroRNAs in the search for understanding human diseases. BioDrugs 2007;21:97-104
  • Chang CJ, Hsu CC, Chang CH, Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 2011;26:1003-10
  • McCarty MF. Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med Hypotheses 2012;78:262-9
  • Li Y, VandenBoom TG, Kong D, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009;69:6704-12
  • Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009;8:843-52
  • Golestaneh AF, Atashi A, Langroudi L, miRNAs expressed differently in cancer stem cells and cancer cells of human gastric cancer cell line MKN-45. Cell Biochem Funct 2012;30:411-8
  • Gunaratne PH. Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther 2009;4:168-77
  • Buechner J, Tomte E, Haug BH, Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 2011;105:296-303
  • Kong D, Heath E, Chen W, Loss of Let-7 Up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS ONE 2012;7:e33729
  • Dillhoff M, Liu J, Frankel W, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 2008;12:2171-6
  • Moriyama T, Ohuchida K, Mizumoto K, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 2009;8:1067-74
  • Ali S, Ahmad A, Banerjee S, Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 2010;70:3606-17
  • Bao B, Ali S, Banerjee S, Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2012;72:335-45
  • Olson P, Lu J, Zhang H, MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009;23:2152-65
  • Zhang B, Pan X, Cobb GP, microRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302:1-12
  • Han M, Wang Y, Liu M, MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 2012;103:1058-64
  • Kulshreshtha R, Ferracin M, Negrini M, Regulation of microRNA expression: the hypoxic component. Cell Cycle 2007;6:1426-31
  • Kulshreshtha R, Ferracin M, Wojcik SE, A microRNA signature of hypoxia. Mol Cell Biol 2007;27:1859-67
  • Nie Y, Han BM, Liu XB, Identification of MicroRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci 2011;7:762-8
  • Kent OA, Mullendore M, Wentzel EA, A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 2009;8:2013-24
  • Kong D, Heath E, Chen W, Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 2012;4:14-23
  • Aranha MM, Santos DM, Sola S, miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011;6:e21396
  • Guo Y, Li S, Qu J, MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells. Mol Cell Biochem 2011;354:275-82
  • Lodygin D, Tarasov V, Epanchintsev A, Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008;7:2591-600
  • Sun F, Fu H, Liu Q, Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 2008;582:1564-8
  • Wang X, Meyers C, Guo M, Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int J Cancer 2011;129:1362-72
  • Jiang P, Liu R, Zheng Y, MiR-34a inhibits lipopolysaccharide-induced inflammatory response through targeting Notch1 in murine macrophages. Exp Cell Res 2012;318:1175-84
  • Chang SJ, Weng SL, Hsieh JY, MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics 2011;4:65
  • Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res 2011;71:5950-4
  • Nalls D, Tang SN, Rodova M, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS ONE 2011;6:e24099
  • Luo L, Zhang T, Liu H, MiR-101 and Mcl-1 in non-small-cell lung cancer: expression profile and clinical significance. Med Oncol 2011; in press
  • Pang Y, Young CY, Yuan H. MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 2010;42:363-9
  • Sparmann A, van LM. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006;6:846-56
  • Alajez NM, Shi W, Hui AB, Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 2010;1:e85
  • Leung-Kuen AS, Chak-Lui WC, Man-Fong LJ, Enhancer of zeste homolog 2 (EZH2) epigenetically silences multiple tumor suppressor miRNAs to promote liver cancer metastasis. Hepatology 2012;56:622-31
  • Smits M, Nilsson J, Mir SE, miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 2010;1:710-20
  • Zhang JG, Guo JF, Liu DL, MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 2011;6:671-8
  • Cao P, Deng Z, Wan M, MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 2010;9:108
  • Wendlandt EB, Graff JW, Gioannini TL, The role of MicroRNAs miR-200b and miR-200c in TLR4 signaling and NF-kappaB activation. Innate Immun 2012; in press
  • Bao B, Wang Z, Ali S, Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011;307:26-36
  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010;39:761-72
  • Leal JA, Lleonart ME. MicroRNAs and cancer stem cells: therapeutic approaches and future perspectives. Cancer Lett 2012; in press
  • Abas F, Lajis NH, Shaari K, A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 2005;68:1090-3
  • Hatcher H, Planalp R, Cho J, Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008;65:1631-52
  • Narayan S. Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting beta-catenin-mediated transactivation and cell-cell adhesion pathways. J Mol Histol 2004;35:301-7
  • Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 2010;343:489-99
  • Mukherjee PK, Maity N, Nema NK, Bioactive compounds from natural resources against skin aging. Phytomedicine 2011;19:64-73
  • Padhye S, Chavan D, Pandey S, Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Rev Med Chem 2010;10:372-87
  • Sarkar FH, Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 2009;35:597-607
  • Sarkar FH, Li Y, Wang Z, Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 2010;16:1801-12
  • Wang Z, Desmoulin S, Banerjee S, Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci 2008;83:293-300
  • Wang Z, Li Y, Ahmad A, Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem 2011;112:78-88
  • Nautiyal J, Kanwar SS, Yu Y, Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal 2011;6:7
  • Yu Y, Kanwar SS, Patel BB, Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl Oncol 2009;2:321-8
  • Padhye S, Banerjee S, Chavan D, Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 2009;26:2438-45
  • Ali S, Ahmad A, Aboukameel A, Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 2012;319:173-81
  • Bao B, Ali S, Kong D, Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS ONE 2011;6:e17850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.