483
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic targeting of the p53 pathway in cancer stem cells

, , , , & , MD PhD
Pages 1161-1174 | Published online: 24 Sep 2012

Bibliography

  • Zhao T, Xu Y. p53 and stem cells: new developments and new concerns. Trends Cell Biol 2010;20:170-5
  • Chen F, Wang W, El-Deiry WS. Current strategies to target p53 in cancer. Biochem Pharmacol 2010;80:724-30
  • Wang W, El-Deiry WS. Restoration of p53 to limit tumor growth. Curr Opin Oncol 2008;20:90-6
  • Mandinova A, Lee SW. The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci Transl Med 2011;3:64rv1
  • Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009;458:1127-30
  • Stiewe T. The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 2007;7:165-8
  • Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol 2012;165:328-44
  • Sax JK, Fei P, Murphy ME, BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 2002;4:842-9
  • el-Deiry WS, Tokino T, Velculescu VE, WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817-25
  • Wu GS, Burns TF, McDonald ER III, KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17:141-3
  • Sax JK, El-Deiry WS. p53 downstream targets and chemosensitivity. Cell Death Differ 2003;10:413-17
  • Stegh AH. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 2012;16:67-83
  • Jin S, Levine AJ. The p53 functional circuit. J Cell Sci 2001;114:4139-40
  • Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001;10:699-703
  • Tang Y, Zhao W, Chen Y, Acetylation is indispensable for p53 activation. Cell 2008;133:612-26
  • Zhao Y, Lu S, Wu L, Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 2006;26:2782-90
  • Kruse JP, Gu W. Modes of p53 regulation. Cell 2009;137:609-22
  • Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 2010;17:901-11
  • Johnson RA, Shepard EM, Scotto KW. Differential regulation of MDR1 transcription by the p53 family members. Role of the DNA binding domain. J Biol Chem 2005;280:13213-19
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49-53
  • Ventura A, Kirsch DG, McLaughlin ME, Restoration of p53 function leads to tumour regression in vivo. Nature 2007;445:661-5
  • Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323-34
  • Xue W, Zender L, Miething C, Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656-60
  • Kastan MB. Wild-type p53: tumors can't stand it. Cell 2007;128:837-40
  • Lu C, El-Deiry WS. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 2009;14:597-606
  • Lee J, Moon C. Current status of experimental therapeutics for head and neck cancer. Exp Biol Med (Maywood) 2011;236:375-89
  • O'Shea CC, Johnson L, Bagus B, Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004;6:611-23
  • O'Shea CC, Soria C, Bagus B, McCormick F. Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005;8:61-74
  • Garber K. China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 2006;98:298-300
  • Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 2011;4:16
  • Lu C, Wang W, El-Deiry WS. Non-genotoxic anti-neoplastic effects of ellipticine derivative NSC176327 in p53-deficient human colon carcinoma cells involve stimulation of p73. Cancer Biol Ther 2008;7:2039-46
  • Wang W, Kim SH, El-Deiry WS. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc Natl Acad Sci USA 2006;103:11003-8
  • Kravchenko JE, Ilyinskaya GV, Komarov PG, Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008;105:6302-7
  • Rosenbluth JM, Mays DJ, Pino MF, A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol 2008;28:5951-64
  • Yu X, Vazquez A, Levine AJ, Carpizo DR. Allele-Specific p53 Mutant Reactivation. Cancer Cell 2012;21:614-25
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011;17:313-19
  • Gupta PB, Onder TT, Jiang G, Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009;138:645-59
  • Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008;88:459-63
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74
  • O'Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors: an overview. Semin Radiat Oncol 2009;19:71-7
  • Driessens G, Beck B, Caauwe A, Defining the mode of tumour growth by clonal analysis. Nature 2012;488(7412):527-30
  • Schepers AG, Snippert HJ, Stange DE, Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 2012;337:730-5
  • Chen J, Li Y, Yu TS, A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012;488(7412):522-6
  • Xu Y. A new role for p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle 2005;4:363-4
  • Lin T, Chao C, Saito S, p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 2005;7:165-71
  • Spike BT, Wahl GM. p53, Stem Cells, and Reprogramming: tumor Suppression beyond Guarding the Genome. Genes Cancer 2011;2:404-19
  • Lee KH, Li M, Michalowski AM, A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci USA 2010;107:69-74
  • Maimets T, Neganova I, Armstrong L, Lako M. Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 2008;27:5277-87
  • Krizhanovsky V, Lowe SW. Stem cells: the promises and perils of p53. Nature 2009;460:1085-6
  • Puzio-Kuter AM, Levine AJ. Stem cell biology meets p53. Nat Biotechnol 2009;27:914-15
  • Utikal J, Polo JM, Stadtfeld M, Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009;460:1145-8
  • Marion RM, Strati K, Li H, A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009;460:1149-53
  • Li H, Collado M, Villasante A, The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009;460:1136-9
  • Kawamura T, Suzuki J, Wang YV, Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009;460:1140-4
  • Hong H, Takahashi K, Ichisaka T, Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009;460:1132-5
  • Tapia N, Scholer HR. p53 connects tumorigenesis and reprogramming to pluripotency. J Exp Med 2010;207:2045-8
  • Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005;7:1074-82
  • Sarig R, Rivlin N, Brosh R, Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 2010;207:2127-40
  • Flores I, Blasco MA. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS ONE 2009;4:e4934
  • Zhou Z, Flesken-Nikitin A, Nikitin AY. Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 2007;67:5683-90
  • Meletis K, Wirta V, Hede SM, p53 suppresses the self-renewal of adult neural stem cells. Development 2006;133:363-9
  • Mendrysa SM, Ghassemifar S, Malek R. p53 in the CNS: perspectives on Development, Stem Cells, and Cancer. Genes Cancer 2011;2:431-42
  • Armesilla-Diaz A, Bragado P, Del Valle I, p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 2009;158:1378-89
  • Hede SM, Nazarenko I, Nister M, Lindstrom MS. Novel perspectives on p53 function in neural stem cells and brain tumors. J Oncol 2011;2011:852970
  • Akala OO, Park IK, Qian D, Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 2008;453:228-32
  • Bondar T, Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010;6:309-22
  • Korkaya H, Wicha MS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 2007;21:299-310
  • Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008;8:387-98
  • Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843-50
  • Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell 2008;15:801-12
  • Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003;22:6598-608
  • Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev 2007;28:339-63
  • de Sousa EM, Vermeulen L, Richel D, Medema JP. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 2011;17:647-53
  • Pannuti A, Foreman K, Rizzo P, Targeting Notch to target cancer stem cells. Clin Cancer Res 2010;16:3141-52
  • Merchant AA, Matsui W. Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res 2010;16:3130-40
  • Tao L, Roberts AL, Dunphy KA, Repression of mammary stem/progenitor cells by p53 is mediated by Notch and separable from apoptotic activity. Stem Cells 2011;29:119-27
  • Liu Y, Elf SE, Miyata Y, p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009;4:37-48
  • Cheng T, Rodrigues N, Shen H, Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804-8
  • van Os R, de Haan G, Dykstra BJ. Hematopoietic stem cell quiescence: yet another role for p53. Cell Stem Cell 2009;4:7-8
  • Liu Y, Elf SE, Asai T, The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 2009;8:3120-4
  • Hirschmann-Jax C, Foster AE, Wulf GG, A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004;101:14228-33
  • Bunting KD, Zhou S, Lu T, Sorrentino BP. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 2000;96:902-9
  • Allen JE, Hart LS, Dicker DT, Visualization and enrichment of live putative cancer stem cell populations following p53 inactivation or Bax deletion using non-toxic fluorescent dyes. Cancer Biol Ther 2009;8:2194-205
  • Vilgelm A, Wei JX, Piazuelo MB, DeltaNp73alpha regulates MDR1 expression by inhibiting p53 function. Oncogene 2008;27:2170-6
  • Joseph B, Hermanson O. Molecular control of brain size: regulators of neural stem cell life, death and beyond. Exp Cell Res 2010;316:1415-21
  • Nekulova M, Holcakova J, Coates P, Vojtesek B. The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett 2011;16:296-327
  • Godar S, Ince TA, Bell GW, Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 2008;134:62-73
  • Du Z, Li J, Wang L, Overexpression of DeltaNp63alpha induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci 2010;101:2417-24
  • Van Maerken T, Speleman F, Vermeulen J, Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 2006;66:9646-55
  • Zhao Z, Zuber J, Diaz-Flores E, p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010;24:1389-402
  • Mizuno H, Spike BT, Wahl GM, Levine AJ. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Natl Acad Sci USA 2010;107:22745-50
  • Paolella BR, Havrda MC, Mantani A, p53 directly represses Id2 to inhibit the proliferation of neural progenitor cells. Stem Cells 2011;29:1090-101
  • Zheng H, Ying H, Yan H, p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 2008;455:1129-33
  • Grinstein E, Wernet P. Cellular signaling in normal and cancerous stem cells. Cell Signal 2007;19:2428-33
  • Pelicci PG. Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 2004;113:4-7
  • Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003;423:255-60
  • Hemmati HD, Nakano I, Lazareff JA, Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100:15178-83
  • Liu S, Dontu G, Mantle ID, Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063-71
  • Ji Q, Hao X, Zhang M, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 2009;4:e6816
  • Liu C, Kelnar K, Liu B, The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011;17:211-15
  • Nalls D, Tang SN, Rodova M, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 2011;6:e24099
  • Ji Q, Hao X, Meng Y, Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008;8:266
  • Amson R, Pece S, Lespagnol A, Reciprocal repression between P53 and TCTP. Nat Med 2011;18(1):91-9
  • Koziol MJ, Garrett N, Gurdon JB. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 2007;17:801-7
  • Pece S, Tosoni D, Confalonieri S, Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010;140:62-73
  • Ligon KL, Huillard E, Mehta S, Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007;53:503-17
  • Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 2005;19:756-67
  • Swanson KM, Hohl RJ. Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets 2006;6:15-37
  • Fritz G. Targeting the mevalonate pathway for improved anticancer therapy. Curr Cancer Drug Targets 2009;9:626-38
  • Freed-Pastor WA, Mizuno H, Zhao X, Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012;148:244-58
  • Ginestier C, Monville F, Wicinski J, Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target. Stem Cells 2012;30:1327-37
  • Ginestier C, Charafe-Jauffret E, Birnbaum D. p53 and cancer stem cells: The mevalonate connexion. Cell Cycle 2012;11(14):2583-4
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8
  • Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012. doi: 10.1016/j.semcancer.2012.04.001
  • Mani SA, Guo W, Liao MJ, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15
  • Morel AP, Lievre M, Thomas C, Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008;3:e2888
  • Chen C, Wei Y, Hummel M, Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 2011;6:e16466
  • Asiedu MK, Ingle JN, Behrens MD, TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 2011;71:4707-19
  • Kong D, Banerjee S, Ahmad A, Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 2010;5:e12445
  • Chang CJ, Chao CH, Xia W, p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011;13:317-23
  • Kogan-Sakin I, Tabach Y, Buganim Y, Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ 2011;18:271-81
  • Dong P, Karaayvaz M, Jia N, Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 2012. doi: 10.1038/onc.2012.334
  • Zhang Y, Yan W, Jung YS, Chen X. Mammary epithelial cell polarity is regulated differentially by p73 isoforms via epithelial-to-mesenchymal transition. J Biol Chem 2012;287:17746-53
  • Li L, Wang L, Wang Z, Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 2012;21:266-81
  • Ito T, Zimdahl B, Reya T. aSIRTing control over cancer stem cells. Cancer Cell 2012;21:140-2
  • Cicalese A, Bonizzi G, Pasi CE, The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009;138:1083-95
  • Huang C, Zhang XM, Tavaluc RT, The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells. Cancer Biol Ther 2009;8:2186-93
  • Janicke RU, Sohn D, Schulze-Osthoff K. The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ 2008;15:959-76
  • Vousden KH. Outcomes of p53 activation–spoilt for choice. J Cell Sci 2006;119:5015-20
  • Donehower LA. Does p53 affect organismal aging? J Cell Physiol 2002;192:23-33
  • Gatza CE, Dumble M, Kittrell F, Altered mammary gland development in the p53+/m mouse, a model of accelerated aging. Dev Biol 2008;313:130-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.