364
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Targeting α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors in epilepsy

, , , , MD &

Bibliography

  • Marmiroli P, Cavaletti G. The glutamatergic neurotransmission in the central nervous system. Curr Med Chem 2012;19:1269-76
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010;460:525-42
  • De Sarro G, Gitto R, Russo E, et al. AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem 2005;5:31-42
  • Rogawski MA. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 2013;197:9-18
  • Russo E, Gitto R, Citraro R, et al. New AMPA antagonists in epilepsy. Expert Opin Investig Drugs 2012;21:1371-89
  • Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci 2012;35:1908-16
  • Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 2011;11:56-63
  • Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000;59:33-78
  • Bogaert E, d'Ydewalle C, Van Den Bosch L. Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target. CNS Neurol Disord Drug Targets 2010;9:297-304
  • Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007;4:18-61
  • Citraro R, Russo E, Gratteri S, et al. Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006;51:1058-67
  • Lee CY, Fu WM, Chen CC, et al. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008;49:888-97
  • Russo E, Constanti A, Ferreri G, et al. Nifedipine affects the anticonvulsant activity of topiramate in various animal models of epilepsy. Neuropharmacology 2004;46:865-78
  • Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010;62:405-96
  • Sierra-Paredes G, Sierra-Marcuno G. Extrasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol Disord Drug Targets 2007;6:288-300
  • Li ST, Ju JG. Functional roles of synaptic and extrasynaptic NMDA receptors in physiological and pathological neuronal activities. Curr Drug Targets 2012;13:207-21
  • Liu SQ, Cull-Candy SG. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 2000;405:454-8
  • Lu W, Shi Y, Jackson AC, et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 2009;62:254-68
  • Kortenbruck G, Berger E, Speckmann EJ, Musshoff U. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 2001;8:459-68
  • Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 1997;20:464-70
  • Liu SJ, Savtchouk I. Ca(2+) permeable AMPA receptors switch allegiances: mechanisms and consequences. J Physiol 2012;590:13-20
  • Bowie D. Redefining the classification of AMPA-selective ionotropic glutamate receptors. J Physiol 2012;590:49-61
  • Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 2007;8:101-13
  • Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009;462:745-56
  • Cheng J, Dong J, Cui Y, et al. Interacting partners of AMPA-type glutamate receptors. J Mol Neurosci 2012;48:441-7
  • Tolle TR, Berthele A, Zieglgansberger W, et al. Flip and flop variants of AMPA receptors in the rat lumbar spinal cord. Eur J Neurosci 1995;7:1414-19
  • Sommer B, Keinanen K, Verdoorn TA, et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 1990;249:1580-5
  • Jackson AC, Nicoll RA. Stargazing from a new vantage–TARP modulation of AMPA receptor pharmacology. J Physiol 2011;589:5909-10
  • Kato AS, Gill MB, Yu H, et al. TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 2010;33:241-8
  • Menuz K, Stroud RM, Nicoll RA, Hays FA. TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists. Science 2007;318:815-17
  • Maclean DM, Bowie D. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation. J Physiol 2011;589:5383-90
  • Gill MB, Kato AS, Wang H, Bredt DS. AMPA receptor modulation by cornichon-2 dictated by transmembrane AMPA receptor regulatory protein isoform. Eur J Neurosci 2012;35:182-94
  • Diaz E. Regulation of AMPA receptors by transmembrane accessory proteins. Eur J Neurosci 2010;32:261-8
  • Tomita S, Fukata M, Nicoll RA, Bredt DS. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 2004;303:1508-11
  • Porter BE, Cui XN, Brooks-Kayal AR. Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons. Eur J Neurosci 2006;23:2857-63
  • Condorelli DF, Belluardo N, Mudo G, et al. Changes in gene expression of AMPA-selective glutamate receptor subunits induced by status epilepticus in rat brain. Neurochem Int 1994;25:367-76
  • Grooms SY, Opitz T, Bennett MV, Zukin RS. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc Natl Acad Sci USA 2000;97:3631-6
  • Hu Y, Jiang L, Chen H, Zhang X. Expression of AMPA receptor subunits in hippocampus after status convulsion. Childs Nerv Syst 2012;28:911-18
  • Sanchez RM, Koh S, Rio C, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 2001;21:8154-63
  • Rakhade SN, Zhou C, Aujla PK, et al. Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J Neurosci 2008;28:7979-90
  • Blumcke I, Beck H, Scheffler B, et al. Altered distribution of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2(4) and the N-methyl-D-aspartate receptor subunit NMDAR1 in the hippocampus of patients with temporal lobe epilepsy. Acta Neuropathol 1996;92:576-87
  • Lopes MW, Soares FM, de Mello N, et al. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp Brain Res 2013;226:153-63
  • Rajasekaran K, Todorovic M, Kapur J. Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann Neurol 2012;72:91-102
  • Russo I, Bonini D, Via LL, et al. AMPA receptor properties are modulated in the early stages following pilocarpine-induced status epilepticus. Neuromolecular Med 2013;15:324-38
  • Krestel HE, Shimshek DR, Jensen V, et al. A genetic switch for epilepsy in adult mice. J Neurosci 2004;24:10568-78
  • Vollmar W, Gloger J, Berger E, et al. RNA editing (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 2004;15:371-9
  • Prince HC, Tzingounis AV, Levey AI, Conn PJ. Functional downregulation of GluR2 in piriform cortex of kindled animals. Synapse 2000;38:489-98
  • Ekonomou A, Smith AL, Angelatou F. Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced ‘kindling' model of epilepsy. Brain Res Mol Brain Res 2001;95:27-35
  • Fritsch B, Stott JJ, Joelle Donofrio J, Rogawski MA. Treatment of early and late kainic acid-induced status epilepticus with the noncompetitive AMPA receptor antagonist GYKI 52466. Epilepsia 2010;51:108-17
  • Barad Z, Shevtsova O, Arbuthnott GW, Leitch B. Selective loss of AMPA receptors at corticothalamic synapses in the epileptic stargazer mouse. Neuroscience 2012;217:19-31
  • Kennard JT, Barmanray R, Sampurno S, et al. Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis 2011;42:48-54
  • Beyer B, Deleuze C, Letts VA, et al. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4. Hum Mol Genet 2008;17:1738-49
  • Mineff EM, Weinberg RJ. Differential synaptic distribution of AMPA receptor subunits in the ventral posterior and reticular thalamic nuclei of the rat. Neuroscience 2000;101:969-82
  • Meeren HK, Pijn JP, Van Luijtelaar EL, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 2002;22:1480-95
  • Kamphuis W, Gorter JA, Wadman WJ, Lopes da Silva FH. Hippocampal kindling leads to different changes in paired-pulse depression of local evoked field potentials in CA1 area and in fascia dentata. Neurosci Lett 1992;141:101-5
  • Pollard H, Heron A, Moreau J, et al. Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia. Neuroscience 1993;57:545-54
  • Rosa ML, Jefferys JG, Sanders MW, Pearson RC. Expression of mRNAs encoding flip isoforms of GluR1 and GluR2 glutamate receptors is increased in rat hippocampus in epilepsy induced by tetanus toxin. Epilepsy Res 1999;36:243-51
  • Seifert G, Schroder W, Hinterkeuser S, et al. Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia 2002;43(Suppl 5):162-7
  • Fornai F, Busceti CL, Kondratyev A, Gale K. AMPA receptor desensitization as a determinant of vulnerability to focally evoked status epilepticus. Eur J Neurosci 2005;21:455-63
  • Gitai DL, Martinelli HN, Valente V, et al. Increased expression of GluR2-flip in the hippocampus of the Wistar audiogenic rat strain after acute and kindled seizures. Hippocampus 2010;20:125-33
  • Mathern GW, Pretorius JK, Kornblum HI, et al. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 1997;120(Pt 11):1937-59
  • Graebenitz S, Kedo O, Speckmann EJ, et al. Interictal-like network activity and receptor expression in the epileptic human lateral amygdala. Brain 2011;134:2929-47
  • Palomero-Gallagher N, Schleicher A, Bidmon HJ, et al. Multireceptor analysis in human neocortex reveals complex alterations of receptor ligand binding in focal epilepsies. Epilepsia 2012;53:1987-97
  • Sprengel R, Higuchi M, Monyer H, Seeburg PH. Glutamate receptor channels: a possible link between RNA editing in the brain and epilepsy. Adv Neurol 1999;79:525-34
  • Harms JE, Benveniste M, Maclean JK, et al. Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology 2013;64:45-52
  • De Sarro G, Ferreri G, Gareri P, et al. Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacol Biochem Behav 2003;74:595-602
  • Hanada T, Hashizume Y, Tokuhara N, et al. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 2011;52:1331-40
  • Hara H, Yamada N, Kodama M, et al. Effect of YM872, a selective and highly water-soluble AMPA receptor antagonist, in the rat kindling and rekindling model of epilepsy. Eur J Pharmacol 2006;531:59-65
  • Yamaguchi S, Donevan SD, Rogawski MA. Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 1993;15:179-84
  • Kodama M, Yamada N, Sato K, et al. Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. Eur J Pharmacol 1999;374:11-19
  • Orain D, Ofner S, Koller M, et al. 6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. Bioorg Med Chem Lett 2012;22:996-9
  • Koller M, Lingenhoehl K, Schmutz M, et al. Quinazolinedione sulfonamides: a novel class of competitive AMPA receptor antagonists with oral activity. Bioorg Med Chem Lett 2011;21:3358-61
  • Pitkanen A, Mathiesen C, Ronn LC, et al. Effect of novel AMPA antagonist, NS1209, on status epilepticus. An experimental study in rat. Epilepsy Res 2007;74:45-54
  • Mazarati AM, Wasterlain CG. N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett 1999;265:187-90
  • Langer M, Brandt C, Zellinger C, Loscher W. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 2011;61:1033-47
  • Nielsen EO, Varming T, Mathiesen C, et al. SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 1999;289:1492-501
  • Weiczner R, Krisztin-Peva B, Mihaly A. Blockade of AMPA-receptors attenuates 4-aminopyridine seizures, decreases the activation of inhibitory neurons but is ineffective against seizure-related astrocytic swelling. Epilepsy Res 2008;78:22-32
  • Loscher W, Rundfeldt C, Honack D. Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur J Neurosci 1993;5:1545-50
  • Czuczwar SJ, Borowicz KK, Kleinrok Z, et al. Influence of combined treatment with NMDA and non-NMDA receptor antagonists on electroconvulsions in mice. Eur J Pharmacol 1995;281:327-33
  • De Sarro G, Chimirri A, Meldrum BS. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block. Eur J Pharmacol 2002;451:55-61
  • Mignani S, Bohme GA, Birraux G, et al. 9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem 2002;10:1627-37
  • Ohno K, Tsutsumi R, Matsumoto N, et al. Functional characterization of YM928, a novel moncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist. J Pharmacol Exp Ther 2003;306:66-72
  • Yamashita H, Ohno K, Amada Y, et al. Effect of YM928, a novel AMPA receptor antagonist, on seizures in EL mice and kainate-induced seizures in rats. Naunyn Schmiedebergs Arch Pharmacol 2004;370:99-105
  • Tarnawa I, Vize ES. 2,3-benzodiazepine AMPA antagonists. Restor Neurol Neurosci 1998;13:41-57
  • De Sarro A, De Sarro G, Gitto R, et al. Synthesis and anticonvulsant activity of new 2,3-benzodiazepines as AMPA receptor antagonists. Farmaco 1999;54:178-87
  • Jakus R, Graf M, Ando RD, et al. Effect of two noncompetitive AMPA receptor antagonists GYKI 52466 and GYKI 53405 on vigilance, behavior and spike-wave discharges in a genetic rat model of absence epilepsy. Brain Res 2004;1008:236-44
  • Gitto R, Barreca ML, De Luca L, et al. Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist. J Med Chem 2003;46:197-200
  • Russo E, Citraro R, De Fazio S, et al. Enhancement of anti-absence effects of ethosuximide by low doses of a noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist in a genetic animal model of absence epilepsy. Epilepsy Behav 2008;13:295-9
  • Lodge D, Bond A, O'Neill MJ, et al. Stereoselective effects-of 2,3-benzodiazepines in vivo: electrophysiology and neuroprotection studies. Neuropharmacology 1996;35:1681-8
  • Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Sixth Eilat Conference (EILAT VI). Epilepsy Res 2002;51:31-71
  • Czuczwar SJ, Swiader M, Kuzniar H, et al. LY 300164, a novel antagonist of AMPA/kainate receptors, potentiates the anticonvulsive activity of antiepileptic drugs. Eur J Pharmacol 1998;359:103-9
  • Borowicz KK, Kleinrok Z, Czuczwar SJ. Effects of LY 300164, a selective non-competitive antagonist of AMPA/KA receptors, on the protective activity of diazepam and diphenylhydantoin in the kindling model of epilepsy in rats. Pol J Pharmacol 1999;51:103
  • Swiader M, Kuzniar H, Kleinrok Z, Czuczwar SJ. Influence of LY 300164, an AMPA/kainate receptor antagonist upon the anticonvulsant action of antiepileptic drugs against aminophylline-induced seizures in mice. Pol J Pharmacol 2003;55:103-7
  • Erdo F, Berzsenyi P, Andrasi F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull 2005;66:43-9
  • Liu XH, Wang P, Barks JD. The non-competitive AMPA antagonist LY 300168 (GYKI 53655) attenuates AMPA-induced hippocampal injury in neonatal rodents. Neurosci Lett 1997;235:93-7
  • Erdo F, Berzsenyi P, Nemet L, Andrasi F. Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study. Brain Res Bull 2006;68:269-76
  • Weiser T, Brenner M, Palluk R, et al. BIIR 561 CL: a novel combined antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties. J Pharmacol Exp Ther 1999;289:1343-9
  • Taylor CP, Meldrum BS. Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 1995;16:309-16
  • Stone TW, Addae JI. The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 2002;447:285-96
  • Weiser T, Iizuka M, Nishimura S, et al. Characterization of the anticonvulsant and neuroprotectant BIIR 561 CL in vitro: effects on native and recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Naunyn Schmiedebergs Arch Pharmacol 2000;362:419-26
  • Wienrich M, Brenner M, Loscher W, et al. In vivo pharmacology of BIIR 561 CL, a novel combined antagonist of AMPA receptors and voltage-dependent Na(+) channels. Br J Pharmacol 2001;133:789-96
  • Feigin V. Irampanel boehringer ingelheim. Curr Opin Investig Drugs 2002;3:908-10
  • Blackburn-Munro G, Bomholt SF, Erichsen HK. Behavioural effects of the novel AMPA/GluR5 selective receptor antagonist NS1209 after systemic administration in animal models of experimental pain. Neuropharmacology 2004;47:351-62
  • Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res 2007;73:1-52
  • McCracken E, Fowler JH, Dewar D, et al. Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502. J Cereb Blood Flow Metab 2002;22:1090-7
  • Kapus G, Kertesz S, Gigler G, et al. Comparison of the AMPA antagonist action of new 2,3-benzodiazepines in vitro and their neuroprotective effects in vivo. Pharm Res 2004;21:317-23
  • Gigler G, Moricz K, Agoston M, et al. Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models. Br J Pharmacol 2007;152:151-60
  • Gressens P, Spedding M, Gigler G, et al. The effects of AMPA receptor antagonists in models of stroke and neurodegeneration. Eur J Pharmacol 2005;519:58-67
  • Matucz E, Moricz K, Gigler G, et al. Therapeutic time window of neuroprotection by non-competitive AMPA antagonists in transient and permanent focal cerebral ischemia in rats. Brain Res 2006;1123:60-7
  • Vegh MG, Kovacs AD, Kovacs G, et al. The new 2,3-benzodiazepine derivative EGIS-8332 inhibits AMPA/kainate ion channels and cell death. Neurochem Int 2007;50:555-63
  • Kovacs A, Szenasi G. Effects of dofetilide and EGIS-7229, an antiarrhythmic agent possessing class III, IV, and IB activities, on myocardial refractoriness in hyperkalemia, hypokalemia, and during beta-adrenergic activation in the rabbit papillary muscle in vitro. J Pharmacol Sci 2006;100:303-9
  • Kovacs AD, Saje A, Wong A, et al. Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease. Neuropharmacology 2011;60:405-9
  • Hibi S, Ueno K, Nagato S, et al. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. J Med Chem 2012;55:10584-600
  • Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol Scand Suppl 2013(197):19-24
  • Ikoma M, Oikawa M, Gill MB, et al. Regioselective domino metathesis of 7-oxanorbornenes and its application to the synthesis of biologically active glutamate analogues. European J Org Chem 2008;2008:5215-20
  • Oikawa M, Ikoma M, Sasaki M, et al. Regioselective domino metathesis of unsymmetrical 7-oxanorbornenes with electron-rich vinyl acetate toward biologically active glutamate analogues. European J Org Chem 2009;2009:5531-48
  • Gill MB, Frausto S, Ikoma M, et al. A series of structurally novel heterotricyclic alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-selective antagonists. Br J Pharmacol 2010;160:1417-29
  • Sutula TP. Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganization. Epilepsia 1990;31(Suppl 3):S45-54
  • Durmuller N, Craggs M, Meldrum BS. The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994;17:167-74
  • Meldrum BS, Craggs MD, Durmuller N, et al. The effects of AMPA receptor antagonists on kindled seizures and on reflex epilepsy in rodents and primates. Epilepsy Res Suppl 1992;9:307-11
  • Namba T, Morimoto K, Sato K, et al. Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res 1994;638:36-44
  • De Sarro G, Di Paola ED, Gareri P, et al. Effects of some AMPA receptor antagonists on the development of tolerance in epilepsy-prone rats and in pentylenetetrazole kindled rats. Eur J Pharmacol 1999;368:149-59
  • Lukomskaya NY, Lavrent'eva VV, Starshinova LA, et al. Effects of ionotropic glutamate receptor channel blockers on the development of pentylenetetrazol kindling in mice. Neurosci Behav Physiol 2007;37:75-81
  • Wojtal K, Borowicz KK, Blaszczyk B, Czuczwar SJ. Interactions of excitatory amino acid receptor antagonists with antiepileptic drugs in three basic models of experimental epilepsy. Pharmacol Rep 2006;58:587-98
  • Borowicz KK, Gasior M, Kleinrok Z, Czuczwar SJ. The non-competitive AMPA/kainate receptor antagonist, GYKI 52466, potentiates the anticonvulsant activity of conventional antiepileptics. Eur J Pharmacol 1995;281:319-26
  • Borowicz KK, Duda AM, Kleinrok Z, Czuczwar SJ. Interaction of GYKI 52466, a selective non-competitive antagonist of AMPA/kainate receptors, with conventional antiepileptic drugs in amygdala-kindled seizures in rats. Pol J Pharmacol 2001;53:101-8
  • Czuczwar SJ, Gasior M, Kaminski R, et al. GYKI 52466 [1-(4-aminophenyl)-4-methoxy-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] and the anticonvulsive activity of conventional antiepileptics against pentetrazol in mice. Mol Chem Neuropathol 1998;33:149-62
  • Borowicz KK, Kleinrok Z, Czuczwar SJ. The AMPA/kainate receptor antagonist, LY 300164, increases the anticonvulsant effects of diazepam. Naunyn Schmiedebergs Arch Pharmacol 2000;361:629-35
  • Borowicz KK, Luszczki J, Szadkowski M, et al. Influence of LY 300164, an antagonist of AMPA/kainate receptors, on the anticonvulsant activity of clonazepam. Eur J Pharmacol 1999;380:67-72
  • Borowicz KK, Kleinrok Z, Czuczwar SJ. Glutamate receptor antagonists differentially affect the protective activity of conventional antiepileptics against amygdala-kindled seizures in rats. Eur Neuropsychopharmacol 2001;11:61-8
  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ. Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice: an isobolographic analysis. Epilepsia 2002;43:956-63
  • Zarnowski T, Kleinrok Z, Turski WA, Czuczwar SJ. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline enhances the protective activity of common antiepileptic drugs against maximal electroshock-induced seizures in mice. Neuropharmacology 1993;32:895-900
  • Jonker DM, Voskuyl RA, Danhof M. Synergistic combinations of anticonvulsant agents: what is the evidence from animal experiments? Epilepsia 2007;48:412-34
  • Rogawski MA, Donevan SD. AMPA receptors in epilepsy and as targets for antiepileptic drugs. Adv Neurol 1999;79:947-63
  • Smith M, Wilcox KS, White HS. Discovery of antiepileptic drugs. Neurotherapeutics 2007;4:12-17
  • De Sarro G, Paola ED, Gratteri S, et al. Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Pharmacol Res 2012;65:285-96
  • Russo E, Donato di Paola E, Gareri P, et al. Pharmacodynamic potentiation of antiepileptic drugs' effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice. Pharmacol Res 2013;70:1-12
  • Meldrum B. Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res 2002;50:33-40
  • Donato Di Paola E, Gareri P, Davoli A, et al. Influence of levetiracetam on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Epilepsy Res 2007;75:112-21
  • Citraro R, Scicchitano F, De Fazio S, et al. Preclinical activity profile of alpha-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res 2011;95:60-9
  • Franco V, Crema F, Iudice A, et al. Novel treatment options for epilepsy: focus on perampanel. Pharmacol Res 2013;70:35-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.